мощности аэробного механизма во время соревновательного периода, что является показателем повышения работоспособности велосипедистов. В свою очередь увеличение аэробной выносливости мышц обусловлено увеличением способности образования энергии (процесса анаболизма).

ЛИТЕРАТУРА

- 1. Полищук, Д. А. Велосипедный спорт / Д. А. Полищук. Киев: Олимпийская литература, 1997. 344 с.
- 2. Перспективы диагностического применения программно-аппаратных комплексов «Омега» для оценки функционального состояния организма учащихся и спортсменов: методическое пособие / Э. С. Питкевич [и др.]. Гомель: Гом-ГМУ, 2011. С. 4–36.
- 3. Душанин, С. А. Система многофакторной экспресс-диагностики функциональной подготовленности спортсменов при текущем и оперативном врачебно-педагогическом контроле / С. А. Душанин. М.: ФиС, 1986. 24 с.

УДК 616-098:796.6.071.091

БИОИМПЕДАНСНЫЙ АНАЛИЗ СОСТАВА ТЕЛА У ВЕЛОСИПЕДИСТОВ ВО ВРЕМЯ ТРЕНИРОВОЧНОГО И СОРЕВНОВАТЕЛЬНОГО ЦИКЛА

Пырх В. В.

Научный руководитель: ассистент Е. Н. Рожкова

Учреждение образования «Гомельский государственный медицинский университет», Учреждение здравоохранения «Гомельский областной диспансер спортивной медицины» г. Гомель, Республика Беларусь

Введение

В спорте широко используется мониторинг состава тела спортсменов с целью оптимизации тренировочного режима, повышения спортивной производительности и поддержания оптимального физического состояния. Под составом тела понимают количественное соотношение основных соматических компонентов, обладающих различной метаболической и функциональной активностью [1].

Одним из современных методов по изучению состава тела спортсменов хорошо зарекомендовал себя биоимпедансный анализ. Биоимпедансный анализ — оперативный, неинвазивный и достаточно надежный метод, широко используемый в области изучения морфологии человека.

Цель

Оценить изменения состава тела спортсменов, занимающихся велоспортом на разных этапах спортивной деятельности.

Материал и методы исследования

На базе «Научно-практического центра спортивной медицины» г. Гомеля обследовались спортсмены, занимающиеся велоспортом. Параметры тела оценивались методом био-импедансного анализа ABC-01 «Медасс» по стандартной методике. Выходные протоколы методики одночастотного интегрального метода биоимпедансометрии содержат оценки следующих параметров: основного обмена, индекса массы тела, жировой массы тела, мышечной массы тела, тощей массы, активной клеточной массы, объема воды в организме, фазового угла [2]. Результаты исследования переносили путем экспорта полученных данных в таблицы «Excel». Для статистической обработки данных использовали компьютерную программу «Statistica» 6.0. В связи с асимметричным распределением показателей для анализа были взяты значения медианы (Ме), нижнего (25-й) и верхнего (75-й) квартилей распределения.

Результаты исследования и их обсуждение

При анализе результатов наблюдается разнонаправленность изменений показателей в зависимости от периода спортивной деятельности. Обработанные данные представлены в таблице 1.

Таблица 1 — Динамика основных показателей состава тела велосипедистов на разных этапах спортивной деятельности

Показатели состава тела	Базовый подготовительный период			Предсоревновательнй период			Соревновательный период		
	Me	25,0	75,0	Me	25,0	75,0	Me	25,0	75,0
Вес (кг)	72,00	71,00	76,00	65,00	56,00	72,00	64,50	54,00	70,10
ИМТ	22,20	22,20	23,80	22,20	21,10	24,80	20,50	18,00	23,40
Тощая масса (кг)	60,90	42,50	68,70	56,50	40,40	64,20	49,40	46,40	55,40
Жировая масса (кг)	16,30	16,10	17,30	15,60	14,30	16,10	15,10	13,10	18,10
Мышечная масса (кг)	33,90	21,10	37,90	33,40	19,90	34,70	29,30	19,00	32,40
АКМ(кг)	38,3	28,20	39,10	32,40	24,80	33,80	31,70	26,10	34,30
Общая жидкость(кг)	44,60	31,10	50,30	41,30	29,60	43,80	28,80	28,80	28,80
Основной обмен (ккал)	1789,0	1595,0	1826,0	1567,0	1399,0	1639,0	1428,0	1290,0	1530,0
Фазовый угол (град)	7,63	7,28	8,95	7,43	7,27	7,58	8,81	7,36	9,34

На основании полученных результатов нами было установлено, что у велосипедистов к соревновательному периоду (декабрь-месяц) наблюдается количественное снижение веса с 76,0 до 64,50 кг за счет уменьшения жировой, мышечной и тощей масс тела. Показатель индекса массы тела (ИМТ) помогает определить идеальный вес, избыток или недостаток массы тела. По международным соглашениям ИМТ на разных этапах спортивной деятельности у велосипедистов находится в пределах нормы (18,5–23,9). В велоспорте в связи с большими энергетическими затратами во время соревнований вес спортсмена всегда должен поддерживаться на определенном постоянном уровне.

Тощая (безжировая) масса тела составляет примерно 75–85 % от веса (34,1–61,4 кг). К ней относится все то, что не является жиром: мышцы, все органы, мозг и нервы, кости и все жидкости, находящиеся в организме. Снижение показателя тощей массы с 60,90 до 49,40 кг связано с уменьшением количества общей жидкости в организме с 44,60 до 28,80 кг. Тощая масса является необходимым показателем для оценки основного обмена веществ, то есть потребления энергии организмом. Активная клеточная масса (АКМ) демонстрирует, сколько в организме клеток, которые принимают активное участие в обмене веществ и энергии. Чем выше АКМ, тем интенсивнее расходуется энергия на обмен веществ, что наблюдается в подготовительный период по сравнению с соревновательным (выше на 6,6 кг). Основной обмен (ОО) в подготовительный период составляет 1789,0 ккал, в предсоревновательный и соревновательный периоды наблюдается тенденция к снижению до 1567,0 и 1428,0 ккал соответсвенно, что свидетельствует об адаптации спортсменов к большим нагрузкам в период соревнований.

Показания жировой массы тела спортсменов варьируют в пределах физиологической нормы (7,4–16,3 кг) и колеблются от 15,1 до 16,30 кг на разных этапах спортивной деятельности. Мышечная масса зависит от уровня физической подготовки и пищевого фактора. Она служит мерой адаптационного резерва организма. Повышение в подготовительном и предсоревновательном периоде мышечной массы до 33,9 и 33,4 кг соответственно и снижение в соревновательном до 29,30 кг (при норме 19,1–32,8 кг) указывает на высокий уровень подготовки спортсменов.

К соревновательному периоду наблюдается увеличение фазового угла (Φ У) на 1,2° по сравнению с подготовительным и предсоревновательным периодом, что свидетельствует о высоком уровне работоспособности спортсменов.

Заключение

Биоимпедансная оценка состава тела велосипедистов на разных этапах спортивной деятельности позволяет сделать вывод об эффективности тренировочного процесса: интенсивнее расходуется энергия на обмен веществ (увеличение показателей ОО и АКМ). Увеличение показателей фазового угла, снижение жировой и тощей масс свидетельствуют об адаптации спортсменов к большим нагрузкам и о достижении пика результативности к соревновательному периоду.

ЛИТЕРАТУРА

^{1.} *Мартиросов*, Э. Γ . Технологии и методы определения состава тела человека / Э. Γ . Мартиросов, Д. В. Николаев, С. Γ . Руднев. — М.: Наука, 2006. — 248 с.

^{2.} Биоимпедансный анализ состава тела человека / Д. В. Николаев [и др.]. — М.: Наука, 2009. — 392 с.