УДК 616.62-022:[579:615.33]

АНАЛИЗ АНТИБИОТИКОЧУВСТВИТЕЛЬНОСТИ МИКРООРГАНИЗМОВ, ВЫДЕЛЕННЫХ ПРИ ИНФЕКЦИИ МОЧЕВЫХ ПУТЕЙ

Илмурадов К., Князюк А. С.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Выбор антибиотика при неосложненных формах инфекций мочевых путей (ИМП) проводится в основном эмпирически и должен исходить из локальных данных по чувствительности уропатогенов к антибактериальным препаратам. Считается, что если уровень резистентности к какому-либо антибиотику в регионе составляет более 10–20~%, то это является предпосылкой ограничения его использования в качестве эмпирической терапии.

Шель

Изучить структуру возбудителей неосложненных ИМП и динамику их чувствительности к наиболее часто используемым антибактериальным препаратам.

Материал и методы исследования

Настоящая публикация представляет собой изучение этиологии неосложненных форм ИМП и резистентности возбудителей к антибиотикам. В данное исследование включено клинических изолятов Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumonia и др. выделенных из мочи пациентов с инфекцией мочевыводящих путей в урологическом отделении ГОКБ в период 2019 (август-декабрь), 2020 (август-декабрь). Чувствительность определялась диско-диффузионным методом на среде Мюллера — Хинтон с использованием дисков Охоід. Идентификация и определение антибиотикочувствительности проводились с использованием автоматического микробиологического анализатора VITEK 2 Compact (bioMérieux, Франция), либо с использованием ручных коммерческих тест-систем АРІ 20Е (энтеробактерии). Обработка результатов проводилась с помощью пакета прикладных программ «Microsoft Excel», 2016 г.

Результаты исследования и их обсуждение

Выделенные микроорганизмы распределились в следующем соотношении в порядке убывания: Escherichia coli — (73,9 %), Klebsiella pneumoniae — (8,2 %), Proteus mirabilis — (6,6 %), Pseudomonas aeruginosa — (5,9 %), другие — (5,4 %).

Результаты определения антибиотикорезистентности изолятов Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae выделенные из мочи пациентов с инфекцией мочевыводящих путей, представлены в таблицах 1–5.

Таблица 1 — Резистентность штаммов $E.\ coli\ (n=112)\ \kappa$ антибактериальным препаратам 2019

Вид бактерий	Антибиотики		Ампициллин- сульбактам	Цефаперазон- сульбактам	Цефаперазон	Цефгазидим	Цефтриаксон	Цефипим	Имипенем	Амоксициллин- клавулант	Амикацин	Ципрофлоксацин	Нитрофурантион	Фосфомицин
F	~1 ;	Ч, %	61,7	92,6	53,6	58,2	54,6	55,9	99,9	15,9	90,9	39,4	79,4	98,7
E. co	011	P, %	38,3	7,4	46,4	41,8	45,4	44,1	0,9	84,1	9,1	60,6	20,6	1,3

Таблица 2 — Резистентность штаммов *Pseudomonas aeruginosa* (n = 58) к антибактериальным препаратам 2019

Вид бактерий	Антибиотики		Амоксициллин- клавуланат	Ампициллин- сульбактам	Цефоперазон	Цефтазидим	Цефепим	Ципрофлокса- цин	Левофлоксацин	Нитрофурантоин	Цефаперазон- сульбактам	Цефтриаксон
Pseudomonas aeruginosa		Ч, %	0	32,7	29,6	30,9	27,5	16,7	36,7	26,3	72,9	29,4
		P, %	100	67,3	70,4	69,1	72,5	83,3	63,3	73,7	27,1	70,6

Таблица 3 — Резистентность штаммов *Klebsiella pneumonia* (n = 57) к антибактериальным препаратам 2019

Вид бактерий	Антибиотики		Амоксициллин- клавуланат	Ампициллин- сульбактам	Цефоперазон	Цефтазидим	Цефтриаксон	Цефепим	Ципрофлоксацин	Левофлоксацин	Нитрофурантоин	Цефаперазон- сульбактам
Klebs	siella	Ч, %	0	32,7	29,6	30,9	29,4	27	16,7	36,7	26,3	72,9
pneumonia		P, %	100	67,3	70,4	69,1	70,6	72,5	83,3	63,3	73,7	27,1

Таблица 4 — Резистентность штаммов $Proteus\ mirabilis\ (n=27)\ \kappa\ антибактериальным препаратам 2019$

Вид бактерий	Антибиотики		Ампициллин- сульбактам	Цефоперазон- сульбактам	Цефоперазон	Цефтазидим	Цефтриаксон	Цефепим	Имипенем	Амоксицилин- клавуланат	Амикацин	Ципрофлоксацин	Нитрофуронтоин
Proteus		Ч, %	61,5	98,4	76	74,1	76	68	100	61,5	96,3	70	10
mirabilis		P, %	38,5	1,6	24	25,9	24	32	0	38,5	3,7	30	90

Таблица 5 — Резистентность штаммов $E.\ coli\ (n=169)\ \kappa$ антибактериальным препаратам 2020

P														
Вид бактерий	Антибиотики		Пиперациллин- тазобактам	Цефаперазон	Цефтазидим	Цефтриаксон	Цефепим	Имипенем	Меропенем	Амикацин	Левофлоксацин	Ципрофлоксацин	Фосфомицин	Ампициллин
E. c	oli	Ч, %	93,3	28,6	92,3	32	30	43,8	35	38,9	27	11,8	96,6	2,8
E. C	.011	P. %	6.7	71.4	7.7	68	70	56.2	65	61.1	73	88.2	3.4	97.2

Таблица 6 — Резистентность штаммов *Klebsiella pneumonia* (n = 105) к антибактериальным препаратам 2020

Вид бактерий Антибиотики		Ампициллин	Пиперациллин- тазобактам	Цефоперазон	Цефтазидим	Цефтриаксон	Цефепим	Имипенем	Меропенем	Амикацин	Левофлоксацин	Ципрофлоксацин	Тайгециклин
Klebsiella	Ч, %	0	93,3	28,6	92,3	2,7	30	43,8	35	38,9	26	11,8	0
pneumonia	P, %	100	6,7	71,4	7,7	97,3	70	56,2	65	61,1	74	88,2	100

Примечание. п — количество исследований

Выводы

Основными микроорганизмами при ИМВП являются Escherichia coli (73,9 %), Klebsiella pneumoniae (8,2 %), Proteus mirabilis (6,6 %) и Pseudomonas aeruginosa (5,9 %) и другие (5,4 %).

Анализ антибиотикочувствительности показал, что последние годы чувствительность *Escherichia coli* снизилась к таким препаратам как: имипенему, амикацину. Чувствительность сохраняются к фосфомицину (97 %), цефтазидиму (90 %), пиперациллин-тазобактаму (93,3 %). Преобладает резистентные штаммы к амоксициллин-клавуланту, ципрофлоксацину, ампициллину.

Klebsiella pneumonia наиболее чувствительна к пиперациллин-тазобактому (93,3 %), цефтазидиму (92,3 %), цефаперазон-сульбактаму (72,9 %). Можно выделить препараты к которым отмечается стабильно высокий уровень резистентности: цефтриаксон, ципрофлоксацин, ампициллин.

Pseudomonas aeruginosa наиболее чувствительна к цефаперазон-сульбактаму (72,9 %); резистентна к амоксициклин-клавуланату (100 %), ципрофлоксацину (83,3%), нитрофурантоину (73,7 %).

Proteus mirabilis наиболее чувствителен к цефаперазон-сульбактаму (98,4 %), имипенему (100 %), ципрофлосацину (70 %), резистентный к нитрофурантоину (90 %), ампициллин-сульбактаму (38,5 %).

ЛИТЕРАТУРА

- 1. Аляев, Ю. Г. Роль определения функционального состояния нижних мочевыводящих путей в выборе лечебной тактики у пациентов с хроническим циститом и хроническим необструктивным пиелонефритом / Ю. Г. Аляев, П. В. Глыбочко, З. К. Гаджиева // Урология. 2011. N $_0$ 6. C. 4–8
- 2. Белобородов, В. Б. Пиелонефрит в свете европейских рекомендаций по антибактериальной терапии уроинфекций / В. Б. Белобородов // Consilium medicum. 2008. Т. 10, № 4. С. 82–88.
- 3. Бондаренко, В. М. Роль дисфункции кишечного барьера в поддержании хронического воспалительного процесса различной локализации / В. М. Бондаренко, Е. В. Рябиченко // Журн. микробиол., эпидемиол. и иммунобиол. 2010. № 1. С. 92–100.
- 4. Давыдов, М. И. Инфекции в онкологии / М. И. Давыдов, И. В. Дмитриева. М.: Практическая медицина, 2009. 471 с.
- 5. Антимикробная терапия и профилактика инфекций почек, мочевыводящих путей и мужских половых органов: Российские национальные рекомендации / Н. А. Лопаткин [и др.]. М., 2014. 63 с.

УДК 616.67-005.98-089-036.8 ОТДАЛЕННЫЕ РЕЗУЛЬТАТЫ ЛЕЧЕНИЯ СИНДРОМА «ОСТРОЙ МОШОНКИ»

Ковалёв А. Ю., Батт Т. А., Симченко Н. И.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Синдром острой мошонки объединяет неотложные состояния в урологии (перекрут яичка (семенного канатика), травма, орхоэпидидимит (орхит), абсцесс, гангрена Фурнье и др. (таблица 1)), сопровождающиеся классической триадой симптомов: увеличением половины мошонки; гиперемией; болезненностью при пальпации. Синдром может развиться в любом возрасте, но у детей регистрируется чаще. У детей до года наиболее встречающимся является перекрут семенного канатика (вследствие большого удельного веса в этой группе интранатальных перекрутов яичка в родах; чаще всего это дети из ягодичного предлежания). У детей старше года и взрослых основная причина этого синдрома — перекрут гидатиды. Гидатида (рудимент вольфова или мюллерова эмбрионального протока) — образование, не несущее функций. Она легко может перекручиваться в области ножки и некротизироваться. Чаще встречается гидатида верхнего полюса яичка (морганиева гидатида, рудимент вольфова протока).