

В летний период (июнь – август), Ме показателя ЭТ на протяжении пяти лет находилась в пределах комфортной нагрузки и умеренно теплом ощущении.

В осенний период (сентябрь – ноябрь), Ме показателя ЭТ на протяжении пяти лет находилась в пределах комфортной нагрузки и прохладном теплоощущении (таблица 1).

Выводы

Таким образом, показатель ЭТ за весенний и зимний периоды Ивацевичского района Брестской области является наглядным примером выхода из зоны теплового комфорта человека, что может сказываться на самочувствии человека и его работоспособности. Эффективная температура как биоклиматический показатель территории может использоваться для задач территориальной дифференциации биоклиматического потенциала на региональном уровне для различных сезонов года.

ЛИТЕРАТУРА

- 1. *Невидимова, О. Г.* Исследование биоклиматического потенциала южной части западной Сибири / О. Г. Невидимова, Е. П. Янкович // Современные проблемы науки и образования. 2015. № 1–1. URL: http://www.science-education.ru/ru/article/view?id=17582. Дата обращения: 20.03.2020.
- 2. Русанов, B. U. Комплексные метеорологические показатели и методы оценки климата для медицинских целей / B. U. Русанов. Томск: Изд-во Томск. ун-та, 1981. 85 с.
- 3. Чайковская, М. А. Опыт применения биометеорологических индексов для прогноза комфортности погодных условий / М. А. Чайковская, А. Н. Ганькин // Проблемы и перспективы развития современной медицины: сборник науч. ст. XI Респ. науч. практ. конф. с междунар. участием студентов и молодых ученых (г. Гомель, 2–3 мая 2019 года) / А. Н. Лызиков [и др.]. Элект. текст. данные (объем 4,8 Мb). Гомель: ГомГМУ, 2019. Т. 2 Электрон. опт. диск (CD-ROM). С. 210–212.

УДК 613.166(476.2-37Мозырь)

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЕПЛОВОЙ ЧУВСТВИТЕЛЬНОСТИ НАСЕЛЕНИЯ МОЗЫРСКОГО РАЙОНА ГОМЕЛЬСКОЙ ОБЛАСТИ

Крот И. И., Крент А. А., Савицкая К. А., Чайковская М. А.

Научный руководитель: старший преподаватель М. А. Чайковская

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Критерии оценки степени комфортности условий погоды находят активное применение в практике учёных всего мира. Биометеорологические индексы являются косвенными индикаторами оценки состояния окружающей человека среды, характеризуя в физическом отношении особенности ее тепловой структуры.

Одним из распространенных биометеорологических показателей комплексного воздействие на человека температуры, влажности и скорости движения воздуха является эквивалентно-эффективная температура (ЭЭТ). ЭЭТ представляет собой сочетание метеорологических величин, производящих тот же тепловой эффект, что и неподвижный воздух при 100 % относительной влажности и определенной температуре и оценивает теплоощущения обнаженного по пояс человека. Тепловой комфорт представлен пределами метеорологических показателей, характеризующийся субъективно хорошим теплоощущением, отсутствием потоотделения, сохранением нормальной температуры тела, отсутствием реакций, указывающих на охлаждение или перегрев организма [1–3]. Особый интерес представляет гигиеническая оценка биометеорологических показателей регионов страны.

Пель

Провести гигиеническую оценку тепловой чувствительности населения Мозырского района Гомельской области на примере расчета показателя эквивалентноэффективной температуры за периоды с 2014 по 2018 гг.

В ходе работы был проведен анализ ежедневных результатов дневников погоды Мозырского района за периоды с 2014–2018 гг. Исследуемыми метеорологическими показателями являлись температура, относительная влажность и скорость ветра. В качестве критерии оценки тепловой чувствительности населения Мозырского района Гомельской области был использован биометеорологический показатель ЭЭТ, рассчитанный по формуле А. Миссенарда:

$$99T = 37 - ((37 - t) / (0.68 - 0.0014f + 1 / (1.76 + 1.4v^{0.75})) - 0.29t (1 - f/100),$$

где t — температура, °C; f — относительная влажность, %; v — скорость ветра, м/с. Интерпретация показателя ЭЭТ по уровню тепловой чувствительности осуществлялась по 6-градусным ступеням. Уровень тепловой чувствительности характеризовался: $0^{\circ}...6^{\circ}$ — умеренно прохладно, $6^{\circ}...12^{\circ}$ — прохладно, $12^{\circ}...18^{\circ}$ — умеренно тепло, $18^{\circ}...24^{\circ}$ — тепло, $24^{\circ}...30^{\circ}$ — умеренная тепловая нагрузка, $>30^{\circ}$ сильная тепловая нагрузка, $-6^{\circ}...0^{\circ}$ — умеренно прохладно, $-6^{\circ}...-12^{\circ}$ — умеренно холодно, $-12^{\circ}...-18^{\circ}$ — холодно, $-18^{\circ}...-24^{\circ}$ — очень холодно, $<-24^{\circ}$ — начинается угроза обморожения.

Статистическая обработка данных осуществлялась при помощи пакета прикладного программного обеспечения «Microsoft Excel» и «Statistica» 10.0.

Результаты исследования и их обсуждение

Из полученных результатов анализа метеорологических показателей дневников погоды Мозырского района Гомельской области за периоды с 2014—2018 гг. по формуле А. Миссенарда был рассчитан и интерпретирован показатель ЭЭТ.

Месяц		2014 г.	2015 г.	2016 г.	2017 г.	2018 г.
	Min	-39,53	-24,29	-27,94	-43,66	-26,4
Декабрь –	Max	1,26	0,89	0,32	0,53	1,37
февраль	Me	-10,05	-8,09	-11,17	-11,21	-9,61
	(25; 75)	(-16,44;-5,63)	(-11,43; -4,62)	(-16,78;-7,7)	(-15,46;-6,77)	(-14,29;-6,77)
Март – май	Min	-8,54	-12,25	-14,8	-7,91	-26,98
	Max	21,86	22,27	20,98	18,41	23,38
	Me	7,9	5,11	5,79	2,91	9,02
	(25; 75)	(1,91; 13,48)	(-0.82; 12.42)	(-2,78; 13,39)	(-1,71;11,1)	(-5,94; 15,79)
Июнь – август	Min	7,27	6,5	5,76	1,22	2,91
	Max	27,58	26,2	27,09	26,65	24,56
	Me	17,62	17,86	19,01	16,58	19,39
	(25;75)	(14,08; 21,51)	(14,89; 21,47)	(14,51; 22,71)	(13,01; 20,15)	(16,35; 21,11)
	Min	-15,24	-12,16	-18,89	-10,01	-19,1
Сентрябрь –	Max	19,62	25,67	22,59	21,13	22,66
ноябрь	Me	5,74	2,51	-1,51	4,71	6,59
	(25; 75)	(-2,53;11,19)	(-1,53;9,87)	(-7,11;10,19)	(-1,67;10,78)	(-2,10; 14,15)

Таблица 1 — Эквивалентно-эффективная температура Мозырского района с 2014—2018 гг.

Показатель ЭЭТ оценивалась по уровню тепловой чувствительности на человеческий организм.

В зимний период (декабрь – февраль), Ме показателя ЭЭТ на протяжении пяти лет по уровню тепловой чувствительности характеризовалась, как умеренно холодно.

В весенний период (март – май), Ме показателя ЭЭТ характеризовалась в 2014 и 2018 гг., как прохладный уровень тепловой чувствительности, а в 2015–2017 гг. умеренно прохладный.

В летний период (июнь – август), Ме показателя ЭЭТ на протяжении пяти лет находилось в пределах нормального уровня комфортности и ощущалось в 2016 и 2018 гг. как тепло, а в 2014, 2015 и 2017 гг. как умеренно тепло.

В осенний период (сентябрь – ноябрь), Ме показателя ЭЭТ в течение 4-х лет (2014—2015, 2017—2018 гг.) характеризовалась, как умеренно прохладный уровень тепловой чувствительности, но в 2016 г. — очень прохладный (таблица 1).

Выводы

Проведенное исследование позволило раскрыть некоторые особенности природных условий региона и на фактическом материале проанализировать влияние климатических и метеорологических факторов на пространственно-временное распределение степени комфортности на территории Мозырского района Гомельской области. В ходе исследования определили, что показатель ЭЭТ за осенний, весенний и зимний периоды Мозырского района Гомельской области, являются периодами выхода из зоны комфортности человека, что в свою очередь влияет на здоровье организма и его адаптационные возможности.

ЛИТЕРАТУРА

- 1. *Невидимова, О. Г.* Исследование биоклиматического потенциала южной части западной Сибири / О. Г. Невидимова, Е. П. Янкович // Современные проблемы науки и образования. 2015. № 1–1. URL: http://www.science-education.ru/ru/article/view?id=17582. Дата обращения: 20.03.2020.
- 2. *Русанов, В. И.* Комплексные метеорологические показатели и методы оценки климата для медицинских целей / В. И. Русанов. Томск: Изд-во Томск. ун-та, 1981. 85 с.
- 3. Чайковская, М. А. Опыт применения биометеорологических индексов для прогноза комфортности погодных условий / М. А. Чайковская, А. Н. Ганькин // Проблемы и перспективы развития современной медицины: сборник науч. ст. XI Респ. науч. практ. конф. с междунар. участием студентов и молодых ученых (г. Гомель, 2–3 мая 2019 года) / А. Н. Лызиков [и др.]. Элект. текст. данные (объем 4,8 Мb). Гомель: ГомГМУ, 2019. Т. 2. Электрон. опт. диск (CD-ROM). С. 210–212.

УДК 613.648.2

ИЗУЧЕНИЕ ОТДЕЛЬНЫХ АСПЕКТОВ ПРОБЛЕМЫ ВОЗДЕЙСТВИЯ НЕИОНИЗИРУЮЩЕГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА ОРГАНИЗМ СОВРЕМЕННОЙ МОЛОДЕЖИ

Левчук А. С., Бекиш А. К.

Научный руководитель: старший преподаватель Г. Д. Смирнова

Учреждение образования «Гродненский государственный медицинский университет» г. Гродно, Республика Беларусь

Введение

Современный человек находится под постоянным воздействием электромагнитных полей (ЭМП) и неионизирующего электромагнитного излучения (НЭМИ).

Вклад устройств мобильной связи в общую электромагнитную нагрузку населения, которая растет в условиях урбанизации огромными темпами, оценивается в последние годы общим значением 70 %. Современный принцип построения сотовой сети можно сравнить с сотами, в центре которых стоит базовая станция. На ней расположены антенны, которые и испускают радиоволны, связывающие между собой мобильный телефон и станцию. В настоящее время ВОЗ классифицировал частоты радиоволн как «возможно канцерогенные».

Наиболее ранними клиническими проявлениями последствий воздействия ЭМИ на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся в виде вегетативных дисфункций неврастенического и астенического синдрома. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией. Отмечаются также фазовые изменения состава периферической крови с последующим развитием умеренной лейкопении, нейропении, эритроцитопении.

Биологический эффект электромагнитных полей в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных по-