#### МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

## УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

Кафедра патологической физиологии

## К. А. КИДУН

## ТЕСТОВЫЕ ЗАДАНИЯ ПО ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

Учебно-методическое пособие для студентов 3 курса факультета по подготовке специалистов для зарубежных стран, обучающихся на английском языке по специальности «Лечебное дело», медицинских вузов

В трех частях

Часть 2 Патофизиология крови

# TEST TASKS ON PATHOLOGICAL PHYSIOLOGY

Teaching workbook for 3<sup>rd</sup> year students of the faculty for training specialists for foreign countries, studying in English on specialty «General medicine» of higher medical education institutions

In three parts

Part 2
Pathophysiology of blood

Гомель ГомГМУ 2017 УДК 616-092 (072)(076.1)=111 ББК 52.52я73 К 38

#### Рецензенты:

доктор медицинских наук, профессор, заведующий кафедрой патологической физиологии Белорусского государственного медицинского университета

### Ф. И. Висмонт;

доктор медицинских наук, профессор, заведующий кафедрой патологической физиологии им. Д. А. Маслакова Гродненского государственного медицинского университета

#### Н. Е. Максимович

#### Под редакцией Т. С. Угольник

### Кидун, К. А.

К 38 Тестовые задания по патологической физиологии: учеб.-метод. пособие для студентов 3 курса факультета по подготовке специалистов для зарубежных стран, обучающихся на английском языке по специальности «Лечебное дело», медицинских вузов: в 3 ч. = Test tasks on pathological physiology: Teaching workbook for 3<sup>rd</sup> year students of the faculty for training specialists for foreign countries, studying in English on specialty «General medicine» of higher medical education institutions. — Р. 2: Pathophysiology of blood / К. А. Кидун; под ред. Т. С. Угольник. — Гомель: ГомГМУ, 2017. — Ч. 2: Патофизиология крови. — 44 с.

ISBN 978-985-506-984-4

Учебно-методическое пособие содержит тестовые задания, составленные в соответствии с типовой учебной программой для вузов по специальности «Лечебное дело». Решение этих заданий позволит углубить и закрепить знания студентов при изучении патологической физиологии.

Предназначено для работы студентов 3 курса факультета по подготовке специалистов для зарубежных стран, обучающихся на английском языке по специальности «Лечебное дело», медицинских вузов. Может быть использовано для самостоятельной работы и самоконтроля знаний.

Утверждено и рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный медицинский университет» 13 июня 2017 г., протокол  $N ext{0}$  5.

УДК 616-092 (072)(076.1)=111 ББК 52.52я73

ISBN 978-985-505-984-4 (4. 2) ISBN 978-985-506-734-5 ©Учреждение образования «Гомельский государственный медицинский университет», 2017

## LIST OF ABBREVIATION

CBV — circulating blood volume

DIC — disseminated intravascular coagulation

DNA — deoxyribonucleic acid

ESR — erythrocyte sedimentation rate

G-6-PD — glucose-6-phosphate dehydrogenase

GP — glycoprotein

Ig — immunoglobulin

Pg — prostaglandin

RBC — red blood cell

WBC — white blood cell

## MULTIPLE CHOICE TESTS

## PATHOPHYSIOLOGY OF BLOOD. CHANGES IN TOTAL BLOOD VOLUME. BLOOD LOSS

#### Indicate all correct answers

#### 1. Increased hematocrit can be considered as:

Variants of answer:

- a) 0,7 1/1;
- b) 0,55 1/1;
- c) 0,45 1/1;
- d) 0,35 1/1.

#### 2. Increased hematocrit index is observed at:

Variants of answer:

- a) a combined mitral heart disease;
- b) 4-5 days after acute blood loss;
- c) burn shock;
- d) erythremia (polycythaemia vera).

### 3. Increased blood viscosity is observed at:

Variants of answer:

- a) relative erythrocytosis;
- b) absolute erythrocytosis;
- c) erythremia (polycythaemia vera);
- d) pernicious anemia Addison-Biermer;
- e) sideroblastic anemia.

#### 4. Decreased hematocrit index is observed at:

Variants of answer:

- a) burn shock;
- b) in first hour after massive blood loss;
- c) 4–5 days after acute blood loss;
- d) pernicious vomiting.

## 5. Polycythemic hypovolemia is observed at:

- a) extensive burns;
- b) overheating;
- c) heart failure;
- d) erythremia (polycythaemia vera).

### 6. Simple hypovolemia is observed at:

Variants of answer:

- a) 30-40 min after acute blood loss;
- b) 6–8 hours after acute blood loss;
- c) burn shock;
- d) overheating.

### 7. Oligocythemic normovolemia is observed at:

Variants of answer:

- a) chronic heart failure;
- b) acute hemolytic anemia;
- c) 4-5 hours after acute blood loss;
- d) chronic post-hemorrhagic anemia.

### 8. Polycythemic normovolemia is observed at:

Variants of answer:

- a) chronic hypoxia;
- b) chronic post-hemorrhagic anemia;
- c) burn shock;
- d) acute hemolytic anemia;
- e) overheating.

## 9. Specify changes in indices of function of cardiovascular system at hypovolemia:

Variants of answer:

- a) increase in blood pressure;
- b) decrease in blood pressure;
- c) decrease in minute blood ejection;
- d) increase in minute blood ejection;
- e) increase in volumetric blood flow velocity;
- f) decrease in volumetric blood flow velocity.

## 10. Normocythemic hypervolemia is observed at:

Variants of answer:

- a) large amount of blood transfusion;
- b) kidney disease;
- c) erythremia;
- d) intravenous injection of blood substitutes;
- e) shock.

## 11. Oligocythemic hypervolemia is observed at:

Variants of answer:

a) heart defects;

- b) in patients with kidney disease;
- c) erythremia;
- d) intravenous injection of physiological solution;
- e) intravenous injection of blood substitutes;
- f) shock.

### 12. Polycythemic hypervolemia is observed at:

Variants of answer:

- a) erythremia (polycythaemia vera);
- b) combined mitral heart disease;
- c) pulmonary emphysema;
- d) kidney disease;
- e) intravenous injection of blood substitutes;
- f) shock.

## 13. Specify processes that have adaptive value for an organism immediate after acute blood loss:

Variants of answer:

- a) decrease in venous return;
- b) peripheral vasoconstriction;
- c) centralization of blood circulation;
- d) tissue hypoperfusion;
- e) oliguria;
- f) hyperventilation.

## 14. Specify etiological factors for blood loss:

Variants of answer:

- a) injury of blood vessels;
- b) increased permeability of vascular wall;
- c) inhibition of blood clotting (haemorrhagic syndrome);
- d) sclerosis of vascular wall;
- e) thrombocytosis.

## 15. During first minutes after acute blood loss of moderate severity is observed:

- a) oligocythemic normovolemia;
- b) normocythemic hypovolemia;
- c) oligocythemic hypovolemia;
- d) polycythemic hypovolemia.

## 16. Specify changes of hematological parameters typical for state after acute blood loss of moderate severity in 20–30 minutes:

Variants of answer:

- a) decrease in hemoglobin in blood unit;
- b) normal hemoglobin in blood unit;
- c) decrease in RBCs in blood unit;
- d) normal hematocrit value;
- e) decrease in content of iron in blood unit.

## 17. Specify the main link in pathogenesis of first stage of acute posthemorrhagic anemia:

*Variants of answer:* 

- a) vessel damage;
- b) decrease in circulating blood volume;
- c) hemic type of hypoxia;
- d) iron deficiency;
- e) decrease in RBCs in blood.

## 18. Vascular reflex phase of compensatory stage after acute blood loss is characterized by:

Variants of answer:

- a) spasm of peripheral vessels due to release of catecholamines;
- b) erythropoiesis;
- c) dilation of peripheral vessels;
- d) activation of the renin-angiotensin-aldosterone system;
- e) release of atrial natriuretic peptide.

## 19. Specify the earliest terms of restoration of circulating blood volume after acute blood loss of moderate severity:

Variants of answer:

- a) after 7–8 hours;
- b) after 24–48 hours;
- c) after 4–5 days.

## 20. At the end of 1-2 days after acute blood loss of moderate severity is observed:

- a) polycythemic hypovolemia;
- b) normocythemic hypovolemia;
- c) oligocythemic normovolemia;
- d) oligocythemic hypovolemia;
- e) oligocythemic hypervolemia.

## 21. Specify changes of hematological parameters typical for state after acute blood loss of moderate severity in 24–48 hours:

Variants of answer:

- a) restoration of hematocrit to normal;
- b) decrease in hematocrit index;
- c) normal color index;
- d) decrease in color index;
- e) increase in reticulocytes in blood;
- f) normal hemoglobin in blood unit.

## 22. Specify a terms of restoration of circulating blood volume (with loss up to 1 liter) by entering of interstitial fluid into a blood vessels:

Variants of answer:

- a) within 1–2 days;
- b) within 2–3 days;
- c) within 1–2 hours;
- d) after 4-5 days;
- e) after 40 days.

## 23. Specify changes in blood volume that occur within 2–3 hours after acute blood loss of moderate severity:

Variants of answer:

- a) oligocythemic hypovolemia;
- b) simple hypovolemia;
- c) oligocythemic normovolemia;
- d) simple normovolemia.

## 24. Specify changes in blood volume that occur after 4–5 days after acute blood loss of moderate severity:

Variants of answer:

- a) oligocythemic hypovolemia;
- b) simple hypovolemia;
- c) oligocythemic normovolemia;
- d) simple normovolemia.

## 25. Specify in what terms after acute blood loss of moderate severity develops reticulocytosis:

- a) after 2-3 days;
- b) after 4–5 days;
- c) after 24–48 hours:
- d) immediately after blood loss.

## 26. Specify changes in hematological parameters that occur after 6–8 days after acute blood loss of moderate severity:

Variants of answer:

- a) increase in reticulocytes in blood;
- b) neutrophilic leukocytosis with nuclear shift to the left;
- c) increase in latent iron binding capacity;
- d) thrombocytopenia;
- e) normochromic anemia.

## 27. Specify a terms of restoration of circulating blood volume (with loss up to 1 liter) due to activation of erythropoiesis:

Variants of answer:

- a) within 1–2 days;
- b) within 2–3 days;
- c) within 1–2 hours;
- d) after 4-5 days;
- e) after 40 days.

## 28. Activation of proteosynthesis in a liver after acute blood loss of moderate severity start after:

Variants of answer:

- a) few hours;
- b) few days;
- c) few weeks;
- d) immediately.

## 29. Terminal stage of acute posthemorrhagic anemia may occur in acute massive blood loss exceeding:

Variants of answer:

- a) 50 % of CBV;
- b) 15 % of CBV;
- c) 20 % of CBV;
- d) 30 % of CBV.

#### 30. Chronic post-hemorrhagic anemia is characterized by:

- a) hypochromia of erythrocytes;
- b) anisocytosis and poikilocytosis of erythrocytes;
- c) reticulocytosis (15–20 %);
- d) normal or slightly increased content of reticulocytes;
- e) decrease in leuco-erythroblastic relations in bone marrow;
- f) increase in coefficient of transferrin saturation.

## PATHOPHYSIOLOGY OF BLOOD. PATHOPHYSIOLOGY OF ERYTHROCYTES. DYSERYTHROPOIETIC ANEMIAS

#### Indicate all correct answers

#### 1. Erythrocyte sedimentation rate is increased at:

Variants of answer:

- a) acute inflammation;
- b) nephrotic syndrome;
- c) erythrocytes;
- d) acidosis;
- e) anemias.

## 2. Indicate in which type of anemias the erythrocyte sedimentation rate is decreased:

Variants of answer:

- a) anemia Addison-Biermer;
- b) iron deficiency anemia;
- c) sickle cell anemia;
- d) aplastic anemia.

## 3. Indicate the main pathogenetic factors causing the development of anemia:

Variants of answer:

- a) insufficient production of erythrocytes;
- b) increased destruction of erythrocytes;
- c) increased production of erythrocytes;
- d) insufficient destruction of erythrocytes;
- e) violation of output of erythrocytes from bone marrow.

#### 4. Dyserythropoietic anemias are:

Variants of answer:

- a) anemia Addison-Biermer;
- b) hereditary spherocytosis (Minkovsky-Shoffar's anemia);
- c) acute posthemorrhagic anemia;
- d) chronic posthemorrhagic anemia;
- e) aplastic anemia.

### 5. Specify anemias that characterized by shift of Price-Jones curve to the left:

- a) anemia Addison-Biermer;
- b) iron deficiency anemia;

- c) hereditary sideroblastic anemia;
- d) chronic posthemorrhagic anemia;
- e) acute posthemorrhagic anemia.

### 6. Microcytosis of erythrocytes is characteristic for:

Variants of answer:

- a) acute posthemorrhagic anemia;
- b) chronic posthemorrhagic anemia;
- c) aplastic anemia;
- d) iron deficiency anemia.

## 7. Specify anemias that characterized by shift of Price-Jones curve to the right:

Variants of answer:

- a) anemia Addison-Biermer;
- b) iron deficiency anemia;
- c) chronic posthemorrhagic anemia;
- d) anemia in diphyllobothriasis;
- e) acute posthemorrhagic anemia.

### 8. Regenerative (hyperregenerative) anemias include:

Variants of answer:

- a) iron deficiency anemia;
- b) acute posthemorrhagic anemia;
- c) Minkovsky-Shoffar's hemolytic anemia;
- d) autoimmune hemolytic anemia;
- e) folic acid deficiency anemia.

## 9. Hyporegenerative anemias include:

Variants of answer:

- a) chronic posthemorrhagic anemia;
- b) acute posthemorrhagic anemia;
- c) anemia at diphyllobothriasis;
- d) hereditary sideroblastic anemia;
- e) hereditary spherocytosis (Minkovsky-Shoffar's anemia).

## 10. Increase in osmotic resistance of erythrocytes is observed at:

- a) in hypercholesterolemia;
- b) chronic post-hemorrhagic anemia;
- c) pernicious anemia Addison-Biermer;
- d) after massive blood loss.

### 11. Indicate which of anemias are normochromic:

Variants of answer:

- a) acute posthemorrhagic anemia;
- b) aplastic anemia;
- c) autoimmune hemolytic anemia;
- d) chronic posthemorrhagic anemia.

### 12. Hypochromia of erythrocytes is detected at:

Variants of answer:

- a) thalassemia;
- b) iron deficiency anemia;
- c) hereditary sideroblastic anemia;
- d) B<sub>12</sub> deficiency anemia;
- e) acute posthemorrhagic anemia;
- f) anemia at diphyllobothriasis.

#### 13. Increased color index is detected at:

Variants of answer:

- a) iron deficiency anemia;
- b) pernicious anemia Addison-Biermer;
- c) diphyllobothriasis;
- d) folic acid deficiency anemia;
- e) aplastic anemia.

## 14. Megaloblastic type of hemopoiesis is observed at:

Variants of answer:

- a) α-thalassemia;
- b) anemia in resection of jejunum;
- c) aplastic anemia;
- d) hereditary hemolytic anemias;
- e) anemia Addison-Biermer;
- f) folic acid deficiency anemia.

## 15. Specify reasons that lead to development of iron deficiency anemia most often:

- a) chronic blood loss;
- b) acute massive blood loss;
- c) ionizing radiation;
- d) prolonged enteritis;
- e) achlorhydric state;
- f) parasitizing broad tapeworm.

### 16. Violation of iron absorption takes place at:

Variants of answer:

- a) intestinal disease, accompanied by a decrease in a sorption properties of enterocytes;
  - b) deficiency of proteins, amino acids;
  - c) invasion of broad tapeworm;
  - d) hereditary atransferrinemia.

### 17. Specify parameters of iron metabolism that are typical for iron deficiency anemia:

Variants of answer:

- a) decrease in sideroblasts in bone marrow;
- b) increase in sideroblasts in bone marrow;
- c) decrease in coefficient of transferrin saturation;
- d) decrease in latent iron binding capacity;
- e) increase in total iron binding capacity.

### 18. Specify hematological parameters typical for iron deficiency anemia:

Variants of answer:

- a) colour index < 0.7;
- b) colour index > 1.2;
- c) reticulocytes 1 %;
- d) anisocytosis with a predominance of microcytes;
- e) anisocytosis with a predominance of macrocytes;
- f) Jolly bodies in erythrocytes.

## 19. Specify reasons leading to the development of sideroblastic anemia:

Variants of answer:

- a) hereditary defect in formation of hemesynthetase;
- b) formation of anti-erythrocytic antibodies;
- c) hereditary defect in synthesis uroporphyrindecarboxylase;
- d) chronic intoxication by lead salts;
- e) G-6-PD deficiency in erythrocytes;
- f) pyridoxal phosphate deficiency.

## 20. Specify hematological parameters typical for sideroblastic anemia:

- a) decrease in serum iron;
- b) hypochromia of erythrocytes;
- c) megaloblastic type of hemopoiesis;
- d) reticulocytosis (15-20 %);
- e) anisocytosis and poikilocytosis of erythrocytes;
- f) shift of Price-Jones curve to the right.

### 21. The causes of $B_{12}$ -deficiency anemia can be:

Variants of answer:

- a) acute massive blood loss;
- b) repeated blood loss;
- c) resection of a stomach;
- d) chronic microbial enteritis;
- e) parasitizing broad tapeworm;
- f) absence of Castle factor in gastric juice.

## 22. Specify factors that play a significant role in the pathogenesis of $B_{12}$ -deficiency anemia:

Variants of answer:

- a) insufficient hemoglobin content in erythrocytes;
- b) violation of DNA synthesis in nuclei of erythroblasts;
- c) shortening of erythrocytes lifetime.

### 23. $B_{12}$ deficiency anemia is characterized by:

Variants of answer:

- a) increase in serum iron;
- b) hypochromia of erythrocytes;
- c) megaloblastic type of hemopoiesis;
- d) macrocytosis;
- e) presence of RBCs with Jolly bodies and Cabot rings;
- f) anisocytosis with a predominance of macrocytes.

## 24. Pernicious anemia Addison-Biermer is characterized by:

Variants of answer:

- a) neutropenia varying degrees;
- b) hyperchromia of erythrocytes;
- c) leukopenia, thrombocytopenia;
- d) atrophic glossitis;
- e) symptoms of funicular myelosis;
- f) increase in latent iron binding capacity.

## 25. A development of pernicious-like anemia can be caused by:

- a) radiation sickness;
- b) subtotal resection of a stomach;
- c) resection of a ileum;
- d) resection of a jejunum;
- e) diphyllobothriasis.

### 26. Folic acid deficiency anemia is characterized by:

Variants of answer:

- a) hyperchromia of erythrocytes;
- b) leukopenia, thrombocytopenia;
- c) atrophic glossitis;
- d) symptoms of funicular myelosis;
- e) increase in latent iron binding capacity;
- f) high percentage of ineffective erythropoiesis.

### 27. Specify the causes of aplastic anemias:

Variants of answer:

- a) resection of a stomach;
- b) leukemias;
- c) lack of vitamin B<sub>12</sub> in food;
- d) drug abuse;
- e) ionizing radiation.

#### 28. Aplastic anemia is characterized by:

Variants of answer:

- a) relative lymphocytosis;
- b) neutropenia;
- c) neutrophilia;
- d) decrease in latent iron binding capacity;
- e) high percentage of ineffective erythropoiesis;
- f) shortening of erythrocytes lifetime.

## 29. Specify hematological parameters typical for aplastic anemia:

Variants of answer:

- a) anisocytosis and poikilocytosis of erythrocytes;
- b) reticulocytosis;
- c) absence of reticulocytes;
- d) leukopenia, thrombocytopenia;
- e) bone marrow hyperplasia;
- f) bone marrow hypoplasia.

## 30. Metaplastic anemia is observed at:

- a) vitamin B<sub>12</sub> deficiency;
- b) action on the organism of microbial poisons;
- c) effects on ionizing radiation on the body;
- d) metastases of malignant tumors in bone marrow;
- e) chronic blood loss.

## PATHOPHYSIOLOGY OF BLOOD. HEMOLYTIC ANEMIAS. ERYTHROCYTOSIS

#### Indicate all correct answers

### 1. Specify hematological parameters typical for hemolytic anemia:

Variants of answer:

- a) anisocytosis and poikilocytosis of erythrocytes;
- b) reticulocytosis;
- c) absence of reticulocytes;
- d) leukopenia, thrombocytopenia;
- e) bone marrow hypoplasia.

### 2. Hemolytic anemia is characterized by:

Variants of answer:

- a) oligocythemic hypovolemia;
- b) oligocythemic hypervolemia;
- c) polycythemic hypovolemia;
- d) oligocythemic normovolemia;
- e) polycythemic normovolemia.

### 3. Lifetime of RBCs in blood is sharply reduced at:

Variants of answer:

- a) sickle cell anemia;
- b) hereditary spherocytosis (Minkovsky-Shoffar's anemia);
- c) thalassemia;
- d) acute posthemorrhagic anemia;
- e) erythrocytosis.

## 4. Intravascular hemolysis is typical for:

Variants of answer:

- a) sickle cell anemia;
- b) hereditary spherocytosis;
- c) sepsis;
- d) transfusion of incompatible blood group;
- e) paroxysmal nocturnal hemoglobinuria.

## 5. Intracellular hemolysis is typical for:

- a) sepsis;
- b) acetic acid poisoning;
- c) thalassemia;

- d) hereditary spherocytosis;
- e) anemia of G-6-PD deficiency.

## 6. The greatest increase in blood concentration of erythropoietin is observed by:

Variants of answer:

- a) acute hemolytic anemia;
- b) acute posthemorrhagic anemia;
- c) chronic posthemorrhagic anemia;
- d) anemia Addison-Biermer;
- e) iron deficiency anemia.

### 7. Specify anemias that are inherited:

Variants of answer:

- a) hemolytic disease of new-born;
- b) paroxysmal nocturnal hemoglobinuria;
- c) hereditary spherocytosis (Minkovsky-Shoffar's anemia);
- d) thalassemia;
- e) sickle cell anemia.

### 8. Recessive type of inheritance has:

Variants of answer:

- a) hereditary sideroblastic anemia;
- b) thalassemia;
- c) anemia of G-6-PD deficiency;
- d) hereditary spherocytosis (Minkovsky-Shoffar's anemia).

#### 9. Autosomal dominant inheritance has:

Variants of answer:

- a) hereditary sideroblastic anemia;
- b) thalassemia:
- c) anemia of G-6-PD deficiency;
- d) hereditary spherocytosis (Minkovsky-Shoffar's anemia).

## 10. Hyperbilirubinemia is typical for:

- a) hereditary spherocytosis (Minkovsky-Shoffar's anemia);
- b) anemia Addison-Biermer;
- c) hereditary sideroblastic anemia;
- d) folic acid deficiency anemia;
- e) chronic posthemorrhagic anemia.

### 11. Heredity hemolytic anemias membranopathias include:

Variants of answer:

- a) hereditary spherocytosis (anemia Minkovsky-Shoffar's);
- b) hereditary elliptocytosis;
- c) G-6-PD deficiency;
- d) thalassemia;
- e) hereditary sideroblastic anemia.

## 12. Hemolytic crisis in hereditary spherocytosis Minkovsky-Shoffar's anemia include:

Variants of answer:

- a) hyperbilirubinemia;
- b) increased intracellular hemolysis;
- c) increased intravascular hemolysis;
- d) enlargement of spleen;
- e) neutrophil shift to the left;
- f) expressed reticulocytosis.

### 13 Mutation in ankyrin is the most common defect for:

Variants of answer:

- a) hereditary spherocytosis (anemia Minkovsky-Shoffar's);
- b) G-6-PD deficiency;
- c) sickle cell anemia;
- d) hereditary sideroblastic anemia;
- e) thalassemia.

## 14. Heredity hemolytic anemias enzymopathies include:

Variants of answer:

- a) hereditary spherocytosis (anemia Minkovsky-Shoffar's);
- b) hereditary elliptocytosis;
- c) anemia with G-6-PD deficiency;
- d) thalassemia;
- e) anemia with pyruvate kinase deficiency.

## 15. Hemolytic crisis at G-6-PD deficiency anemia occurs at:

- a) using sulphonamides;
- b) at night time;
- c) eating fava bean;
- d) eating dairy products;
- e) flu.

### 16. Hemoglobinopathies include:

Variants of answer:

- a) hereditary spherocytosis (Minkovsky-Shoffar's anemia);
- b) sickle cell anemia;
- c) paroxysmal nocturnal hemoglobinuria;
- d) anemia Addison-Biermer;
- e) thalassemia.

#### 17. Sickle cell anemia occurs due to:

Variants of answer:

- a) substitution of valine for glutamic acid in the 6-position of  $\beta$ -globin chain;
- b) substitution of glutamic acid for tyrosine;
- c) using sulfonamides;
- d) infection with malaria Plasmodium;
- e) deficiency of  $\beta$ -chain globin synthesis.

### 18. Specify hematological parameters typical for sickle cell anemia:

Variants of answer:

- a) decrease in color index;
- b) sickle shape of RBCs;
- c) ESR acceleration;
- d) reticulocytosis;
- e) thrombocytosis.

### 19. Signs of thalassemia include:

Variants of answer:

- a) decrease in color index;
- b) sickle shape of RBCs;
- c) target shape of RBCs;
- d) reticulocytosis;
- e) presence of RBCs with Jolly bodies and Cabot rings.

#### 20. Acquired hemolytic anemias include:

Variants of answer:

- a) thalassemia:
- b) transfusion of incompatible blood group;
- c) medicinal;
- d) as a result of sepsis;
- e) sickle cell anemia.

### 21. Indicate a possible causes of hemolytic disease of new-born:

Variants of answer:

a) rhesus incompatibility;

- b) ABO incompatibility;
- c) transfusion of incompatible blood group;
- d) heredity hemaglobinopathy;
- e) as a result of mother sepsis.

## 22. Specify hematological parameters typical for hemolytic crisis in autoimmune hemolytic anemia:

Variants of answer:

- a) anisocytosis, poikilocytosis;
- b) reticulocytosis (30–40 %);
- c) neutrophilia;
- d) hyperbilirubinemia;
- e) increase in latent iron binding capacity.

### 23. Drug-induced immune hemolysis can appear as a result of using:

Variants of answer:

- a) quinine;
- b) penicillins;
- c) cephalosporins;
- d) dexamethazone;
- e) ambroxol.

## 24. Specify type of antibodies that appear at paroxysmal cold hemoglobinuria (Donath-Landsteiner hemolytic anemia):

Variants of answer:

- a) incomplete warm agglutinins;
- b) full cold agglutinins;
- c) warm hemolysins;
- d) 2-phase hemolysins.

## 25. Paroxysmal nocturnal hemoglobinuria (Marchiafava-Micheli disease) is:

- a) acquired hemolytic anemia;
- b) hereditary hemolytic anemias;
- c) characterized by intravascular complement-dependent hemolysis;
- d) characterized by intracellular hemolysis;
- e) associated with defective erythrocyte membrane;
- f) associated with defective erythrocyte enzyme.

### 26. The reasons of nonimmune hemolytic anemias can be:

Variants of answer:

- a) snake venoms;
- b) uremia;
- c) rhesus incompatibility;
- d) hemolysins;
- e) prosthetic heart valves;
- f) G-6-PD deficiency.

#### 27. Absolute and relative erythrocytosis can be distinguished by determining:

Variants of answer:

- a) hematocrit;
- b) concentrations of reticulocytes in hemogram;
- c) ESR;
- d) circulating blood volume;
- e) concentrations of hemoglobin in hemogram.

## 28. Intensification of erythropoiesis without increasing synthesis of erythropoietin occurs at:

Variants of answer:

- a) any absolute erythrocytosis;
- b) erythremia (polycythaemia vera);
- c) erythrocytosis caused by hypoxia;
- d) any relative erythrocytosis;
- e) hypernephroma (Wilm's disease).

## 29. Development of absolute erythrocytosis is observed:

Variants of answer:

- a) combined mitral heart disease;
- b) intense exercise;
- c) at decreased content of 2,3-diphosphoglycerate in erythrocytes;
- d) 4-5 days after acute blood loss;
- e) during chronic hypoxia.

## 30. Secondary (symptomatic) absolute erythrocytosis can occur at:

- a) erythremia;
- b) kidney tumors;
- c) diffuse pneumosclerosis;
- d) chronic blood loss.

# PATHOPHYSIOLOGY OF LEUKON. CHANGES IN QUANTITATIVE AND QUALITATIVE COMPOSITION OF WHITE BLOOD CELLS

#### Indicate all correct answers

### 1. Select functional characteristics of neutrophils:

Variants of answer:

- a) carry out antitumor defence;
- b) phagocytosis of bacteria cells;
- c) phagocytosis of dead cells of own tissues;
- d) produce antibodies;
- e) generates reactive oxygen species;
- f) inactivate histamine.

## 2. Select functional characteristics of lymphocytes:

Variants of answer:

- a) antigen presenting;
- b) implement a humoral and cellular links of immunity;
- c) phagocytosis of microorganism;
- d) inactivate histamine.

## 3. Select functional characteristics of eosinophils:

Variants of answer:

- a) carry out antitumor defence;
- b) participate in mechanisms of development of inflammation;
- c) produce histamine;
- d) produce antibodies;
- e) inactivate histamine.

## 4. Specify changing a structure of neutrophils that are degenerative:

Variants of answer:

- a) nuclei hypersegmentation;
- b) toxigenic granularity of cytoplasm;
- c) cytoplasmic vacuolation;
- d) enhance nuclei dyeing;
- e) presence of dust granularity in cytoplasm;
- f) horseshoe-shaped nucleus.

## 5. Peripheral blood in acute appendicitis is characterized by:

- a) leukopenia;
- b) basophilia;
- c) neutrophilia with shift to the left;

- d) eosinophilia;
- e) lymphocytosis;
- f) monocytosis.

### 6. Peripheral blood in allergic reaction is characterized by:

Variants of answer:

- a) leukocytosis;
- b) basophilia;
- c) neutrophilia with shift to the left;
- d) eosinophilia;
- e) lymphocytosis;
- f) monocytosis.

## 7. Peripheral blood in viral infections is characterized by:

Variants of answer:

- a) no change in leukocyte formula;
- b) basophilia;
- c) neutrophilia with shift to the left;
- d) eosinophilia;
- e) lymphocytosis;
- f) monocytosis.

### 8. Peripheral blood in tuberculosis is characterized by:

Variants of answer:

- a) leukocytosis;
- b) basophilia;
- c) neutrophilia with shift to the right;
- d) eosinophilia;
- e) lymphocytosis;
- f) monocytosis.

## 9. Peripheral blood in helminthic invasions is characterized by:

Variants of answer:

- a) leukocytosis;
- b) basophilia;
- c) neutrophilia with shift to the right;
- d) eosinophilia;
- e) lymphocytosis;
- f) monocytopenia.

## 10. Peripheral blood in stage of recovery after acute infection is characterized by:

- a) leukocytosis;
- b) basophilia;

- c) neutrophilia with shift to the left;
- d) eosinophilia;
- e) lymphocytosis;
- f) monocytosis.

## 11. Peripheral blood in long treatment with glucocorticoids can be characterized by:

Variants of answer:

- a) lymphocytosis;
- b) lymphopenia;
- c) eosinophilia;
- d) eosinopenia;
- e) neutrophilia;
- f) neutropenia;

## 12. Pancytosis (increase in blood erythrocytes, leukocytes and platelets) is characteristic for:

Variants of answer:

- a) chronic lymphocytic leukemia;
- b) erythremia (polycythaemia vera);
- c) chronic inflammation;
- d) pregnancy;

## 13. Pathological leukocytosis can be:

Variants of answer:

- a) myogenic;
- b) inflammatory;
- c) digestive;
- d) infectious;
- e) new-born.

## 14. Main reasons for redistributive leukocytosis are:

Variants of answer:

- a) pregnancy;
- b) physical exercise;
- c) fever:
- d) food intake;
- e) pernicious vomiting;
- f) intake of diuretics.

## 15. Physiological leukocytosis include:

- a) myogenic;
- b) inflammatory;

- c) digestive;
- d) infectious;
- e) new-born.

### 16. Reactive leukocytosis is observed at:

Variants of answer:

- a) furunculosis;
- b) pregnancy;
- c) otitis;
- d) sense of fear;
- e) pneumonia;
- f) myocardial infarction.

### 17. Specify diseases that characterized by absolute neutrophilia:

Variants of answer:

- a) acute appendicitis;
- b) pneumonia;
- c) typhoid fever;
- d) chronic lymphocytic leukemia;
- e) chronic myeloid leukemia;
- f) pulmonary tuberculosis.

## 18. Specify changes in a peripheral blood characterize the nuclear shift of neutrophils to the right:

Variants of answer:

- a) increase of band neutrophils;
- b) hypersegmentation of neutrophils nuclei;
- c) cytoplasmic vacuolation;
- d) appearance of myelocytes;
- e) leukocytosis.

## 19. Specify diseases accompanied by eosinophilia:

Variants of answer:

- a) rubella;
- b) pollinosis;
- c) liver echinococcosis;
- d) bacterial pneumonia;
- e) acute appendicitis;
- f) trichinellosis.

## 20. Specify diseases which are often accompanied by a development of monocytosis:

Variants of answer:

a) measles;

- b) typhoid fever;
- c) myocardial infarction;
- d) infectious mononucleosis;
- e) rubella.

### 21. Specify diseases that accompanied by absolute lymphocytosis:

Variants of answer:

- a) immune form of agranulocytosis;
- b) viral infection;
- c) tuberculosis;
- d) hypoplastic anemia;
- e) infectious mononucleosis;
- f) dehydration.

### 22. Specify diseases accompanied by relative lymphocytosis:

Variants of answer:

- a) immune form of agranulocytosis;
- b) viral infection;
- c) tuberculosis;
- d) hypoplastic anemia;
- e) infectious mononucleosis;
- f) dehydration.

### 23. Indicate diseases that can be accompanied by neutropenia:

Variants of answer:

- a) viral hepatitis;
- b) portal hypertension;
- c) hypercorticoidism;
- d) acute radiation sickness;
- e) myocardial infarction;
- f) anemia Addison-Biermer;
- g) stress states.

## 24. Specify diseases that are characterized by eosinopenia:

Variants of answer:

- a) malignant tumors;
- b) acute phase response;
- c) atopic dermatitis;
- d) stress states;
- e) myelotoxic agranulocytosis.

## 25. Specify diseases that are accompanied by absolute lymphopenia:

- a) infectious mononucleosis;
- b) hypercortisolism;

- c) immune form of agranulocytosis;
- d) Hodgkin's disease;
- e) acute radiation sickness;
- f) stress states.

#### 26. Agranulocytosis is:

Variants of answer:

- a) accumulation of agranulocytes in blood;
- b) severe decrease in granulocytes in blood;
- c) disappearance of specific granularity in cells.

### 27. Specify changes in peripheral blood that are typical for agranulocytosis:

Variants of answer:

- a) significant decrease in blood neutrophils;
- b) any severe leukopenia;
- c) eosinopenia;
- d) absolute lymphocytosis;
- e) relative lymphocytosis.

#### 28. Immune form of agranulocytosis is characterized by:

Variants of answer:

- a) anemia;
- b) thrombocytopenia;
- c) neutropenia;
- d) relative lymphocytosis;
- e) absolute lymphocytosis.

## 29. Myelotoxic form of agranulocytosis is characterized by:

Variants of answer:

- a) anemia;
- b) thrombocytopenia;
- c) neutropenia;
- d) relative lymphocytosis;
- e) lymphopenia;
- f) eosinopenia.

## 30. Specify hematological parameters typical for leukemoid reaction myeloid type:

- a) lymphoblasts in blood;
- b) myeloblasts in blood;
- c) myelocytes and metamyelocytes in blood;
- d) absolute neutrophilia;
- e) relative lymphopenia;
- f) thrombocytopenia and anemia.

## HEMOBLASTOSIS. LEUKEMIA

#### Indicate all correct answers

#### 1. Leukemia is:

Variants of answer:

- a) benign tumor of hematopoietic tissue;
- b) early sign of cancer;
- c) malignant tumor of hematopoietic tissue;
- d) hyperleukocytosis;
- e) sign of delayed-type hypersensitivity.

## 2. Specify etiological factors of leukemia:

Variants of answer:

- a) oncogenic viruses;
- b) hard infections;
- c) neuropsychic disorders;
- d) chemical carcinogens;
- e) ionizing radiation.

### 3. Philadelphia chromosome is:

Variants of answer:

- a) extra 21 chromosome;
- b) extra sex X chromosome;
- c) translocation of chromosomes site from 22 pair to 9;
- d) arm deletion of 12 chromosome;
- e) arm deletion of 18 chromosome.

## 4. Leukemia may be developed with prolonged exposure to:

Variants of answer:

- a) methylbromide;
- b) benzene;
- c) trichlorethylene;
- d) carbon tetrachloride.

## 5. Acute leukemia differs from chronic by:

- a) presence of anemia;
- b) presence of hiatus leukemicus;
- c) immunodepression;
- d) blast crisis;
- e) blast cells in peripheral blood.

### 6. Leukemic form of leukemia is always characterized by:

Variants of answer:

- a) leukopenia;
- b) severe leukocytosis;
- c) erythrocytosis;
- d) disappearance of blast cells in blood;
- e) basophil-eosinophilic association.

### 7. Aleukemic form of leukemia is characterized by:

Variants of answer:

- a) absence of leukocytes in peripheral blood;
- b) severe leukopenia;
- c) normal number of leukocyte in blood;
- d) absence of blasts in blood.

### 8. The term «hiatus leukemicus» refers to:

Variants of answer:

- a) severe anemia;
- b) leukocyte shift to the left;
- c) absence of immature neutrophils with presence of blasts;
- d) high ESR;
- e) severe thrombocytopenia.

## 9. During acute leukemia in bone marrow occurs:

Variants of answer:

- a) WBCs hyperplasia;
- b) absence of WBCs metaplasia;
- c) decrease in number of erythroid germ cells;
- d) increase in number of erythroid germ cells;
- e) decrease in number of megakaryocytes;
- f) increase in number of megakaryocytes.

## 10. Specify changes in peripheral blood that are typical for acute lymphoblastic leukemia:

Variants of answer:

- a) presence of blast cells with a negative reaction to lipids;
- b) presence of blast cells with positive Schick reaction;
- c) anemia, thrombocytopenia;
- d) increase of eosinophils and basophils;
- e) presence of myelocytes and promyelocytes.

## 11. Which of the following statements regarding acute lymphoblastic leukemia is valid:

Variants of answer:

a) tumor cells react with anti-B-cell antiserum;

- b) prognosis is better if in the initial phase the WBC count is high;
- c) marked splenomegaly occurs;
- d) disseminated intravascular coagulation is a common complication;
- e) acute lymphoblastic leukemia is predominantly a childhood disease.

#### 12. In childhood the most common is:

Variants of answer:

- a) chronic myeloid leukemia;
- b) chronic lymphocytic leukemia;
- c) acute lymphoblastic leukemia;
- d) acute myeloid leukemia.

### 13. The onset of acute lymphoblastic leukemia most frequent in:

Variants of answer:

- a) 10–12 years;
- b) neonatal period;
- c) adolescence;
- d) 3–5 years;
- e) 6 months.

## 14. Specify changes in peripheral blood that are typical for acute myeloid leukemia:

Variants of answer:

- a) anemia, thrombocytopenia;
- b) leukocytosis;
- c) presence of blast cells with a negative reaction to lipids;
- d) presence of blast cells with positive Schick reaction;
- e) absolute eosinophilia and basophilia;
- f) presence of Philadelphia chromosome in cells of myeloid lineage.

## 15. Main manifestations of acute leukemia are:

Variants of answer:

- a) secondary infection;
- b) anemia;
- c) polyuria;
- d) hemorrhage;
- e) hyperglycemia.

## 16. Botkin — Gumprecht shadows in blood smear is:

- a) hypochromic erythrocytes;
- b) tear arm of Philadelphia chromosome;
- c) destroyed lymphocytes (shell);
- d) neutrophils with toxic granulation;
- e) eosinophils achromatophils.

### 17. The chronic lymphocytic leukemia is characterized by:

Variants of answer:

- a) anemia;
- b) eosinophilia;
- c) relative lymphocytosis;
- d) appearance of myelocytes in blood;
- e) appearance of prolymphocytes in blood;
- f) appearance of Botkin Gumprecht shadows in blood smear.

## 18. Specify the most characteristic sign for typical course of chronic lymphocytic leukemia:

Variants of answer:

- a) leukopenia with relative lymphocytosis;
- b) normal leucocytes count with absolute lymphocytosis;
- c) severe leukocytosis with lymphocytosis up to 40 %;
- d) severe leukocytosis with lymphocytosis up to 80 %.

### 19. In chronic lymphocytic leukemia:

Variants of answer:

- a) absolute lymphocytosis is observed;
- b) thrombocytosis is observed;
- c) splenomegaly is always present;
- d) Coombs positivity is possible.

## 20. Specify hematological parameters typical for chronic myeloid leukemia:

Variants of answer:

- a) single myeloblasts in blood;
- b) presence of promyelocytes and myelocytes in blood;
- c) anemia, thrombocytopenia;
- d) hiatus leukemicus;
- e) relative lymphocytosis;
- f) neutrophil shift to the right.

## 21. The substrate (basic cells) of multiple myeloma is:

- a) reticulocytes;
- b) plasma cells;
- c) blast cells;
- d) monocytes;
- e) Botkin Gumprecht cells.

### 22. Manifestations of tumor progression in leukemia may include:

Variants of answer:

- a) anemia;
- b) epigastric pain;
- c) reticulocytosis;
- d) increase in blast cells in bone marrow;
- e) enlargement of lymph nodes;
- f) disappearance of blast cells in blood.

### 23. Functional anaplasia is typical for:

Variants of answer:

- a) reactive thrombocytosis;
- b) chronic inflammation;
- c) acute lymphoblastic leukemia;
- d) chronic lymphocytic leukemia;
- e) leukemoid reaction lymphocytic type.

### 24. Immunodepression is typical for:

Variants of answer:

- a) acute lymphoblastic leukemia;
- b) chronic lymphocytic leukemia;
- c) leukemoid reaction lymphocytic type;
- d) reactive thrombocytosis;
- e) chronic monocytic leukemia.

## 25. Detection of Bence-Jones protein in urine is typical for:

Variants of answer:

- a) acute myeloid leukemia;
- b) multiple myeloma;
- c) chronic B-cell lymphocytic leukemia;
- d) erythremia (polycythaemia vera);
- e) chronic myeloid leukemia.

## 26. The appearance of multiple destructions of bone tissue is typical for:

- a) multiple myeloma;
- b) erythremia (polycythaemia vera);
- c) chronic lymphocytic leukemia;
- d) acute myeloid leukemia;
- e) acute lymphoblastic leukemia.

### 27. The infectious-septic complications of leukemia are explained by:

Variants of answer:

- a) leukopenia;
- b) leukemic infiltrates;
- c) immature leukocytes;
- d) substitution of megakaryocytic germ;
- e) immunosuppression.

### 28. Bleeding in leukemia is associated with:

Variants of answer:

- a) leukocytosis;
- b) oppression of megakaryocytic germ in bone marrow;
- c) thrombocytosis;
- d) thrombocytopenia;
- e) leukemic infiltration of liver and violation of its protein synthesis.

#### 29. Anemia in leukemia is associated with:

Variants of answer:

- a) decrease in blood circulating volume;
- b) oppression of erythropoiesis;
- c) inhibition of spleen function;
- d) hemorrhage;
- e) leukocytosis.

## 30. Indicate the most frequent causes of death in leukemia:

- a) bleeding;
- b) secondary infection;
- c) bleeding in vital organs;
- d) disorder of renal function.

### PATHOLOGY OF HEMOSTASIS SYSTEM

#### Indicate all correct answers

### 1. Indicate a typical hemostatic disorders:

*Variants of answer:* 

- a) DIC syndrome;
- b) consumption coagulopathy;
- c) hemorrhagic diathesis;
- d) thrombotic state;
- e) prethrombotic state;
- f) violation of blood rheology.

### 2. Promotes a platelet disaggregation:

Variants of answer:

- a) adrenaline;
- b) thromboxane; ATP;
- d) prostacyclin;
- e) serotonin.

#### 3. Thrombotic vascular resistance is due to:

Variants of answer:

- a) release of tissue thromboplastin;
- b) synthesis of tissue plasminogen activator;
- c) activation of anticoagulant system;
- d) synthesis of prostacyclin (Pg I<sub>2</sub>);
- e) synthesis of von Willebrand factor;
- f) binding of thrombin by thrombomodulin.

## 4. Endogenous anticoagulants include:

Variants of answer:

- a) bradykinin;
- b) heparin;
- c) histamine;
- d) antithrombin III;
- e) thromboplastin;
- f) protein C.

## 5. Vascular-platelet hemostasis can be impaired as a result of:

Variants of answer:

a) decrease a number of platelets;

- b) impaired function of platelets;
- c) hereditary angiopathy;
- d) deficiency of VIII factor;
- e) deficiency of von Willebrand factor;
- f) expression of fibrinogen receptors on platelet membrane.

### 6. Specify the state accompanied by slowing blood clotting:

Variants of answer:

- a) atherosclerosis;
- b) thrombocytopenia;
- c) rheumatism;
- d) diffuse liver disease;
- e) varicose veins;
- f) overdose of anticoagulants.

### 7. Causes of thrombocytopenia are:

Variants of answer:

- a) malignant tumors;
- b) acute radiation sickness;
- c) acute blood loss;
- d) cytotoxic type of allergic reactions;
- e) immune complex type of allergic reactions.

## 8. Specify a factor that causes a development of thrombocytopenia:

Variants of answer:

- a) inhibition of megakaryoblasts proliferation;
- b) substitution of megakaryoblasts by leukemic cells in bone marrow;
- c) activation of leukopoiesis in bone marrow during inflammation;
- d) increased "consumption" of platelets in process of thrombus formation;
- e) immune platelet damage.

## 9. Specify changes that are typical for thrombocytopenic purpura:

Variants of answer:

- a) increase in plasma antiplatelet antibodies (Ig G<sub>3</sub>);
- b) violation of a blood clot retraction;
- c) hematoma type of bleeding;
- d) petechial type of bleeding;
- e) shortening of platelet lifetime.

## 10. During thrombocytopathy:

- a) duration of bleeding is shortened;
- b) duration of bleeding is prolonged;

- c) activated partial thromboplastin time is prolonged;
- d) activated partial thromboplastin time is shortened;
- e) antithrombin III reduced;
- f) antithrombin III norm.

### 11. Hemorrhage caused by thrombocytopathies include:

Variants of answer:

- a) hemophilia C;
- b) Werlhof disease;
- c) von Willebrand disease;
- d) Glanzmann thrombasthenia;
- e) hemophilia B.

## 12. Indicate a mechanism of development of Glanzmann thrombasthenia: Variants of answer:

- a) absence of receptor (GP Ib) for von Willebrand factor in platelet membrane;
- b) violation of factor VIII synthesis;
- c) absence of receptor for fibrinogen (GP IIb / IIIa) in platelet membrane.

### 13. Specify changes that are typical for von Willebrand disease:

Variants of answer:

- a) increase in duration of capillary bleeding;
- b) prolonged duration of blood clotting time;
- c) positive tourniquet test;
- d) deficiency of von Willebrand factor;
- e) violation of factor VIII synthesis;
- f) decrease in procoagulant activity of factor VIII.

## 14. Causes of acquired coagulopathies are:

Variants of answer:

- a) gestosis;
- b) amyloidosis;
- c) liver cirrhosis;
- d) hemolytic jaundice;
- e) hemorrhagic vasculitis;
- f) production of autoimmune inhibitors.

## 15. At coagulopathies:

- a) blood clotting time is shortened;
- b) blood clotting time is prolonged;
- c) activated partial thromboplastin time is prolonged;
- d) activated partial thromboplastin time is shortened;

- e) antithrombin III reduced;
- f) antithrombin III norm.

### 16. Hemophilia A is characterized by:

Variants of answer:

- a) deficiency of VIII clotting factor;
- b) recessive X-linked inheritance;
- c) prolonged prothrombin time;
- d) violation of internal mechanism of formation of prothrombinase activity;
- e) hematoma type of bleeding.

### 17. Specify changes that are typical for hemophilia:

Variants of answer:

- a) increase in duration of capillary bleeding;
- b) prolonged duration of blood clotting time;
- c) positive tourniquet test;
- d) changed thrombin time.

## 18. Coagulopathy due to deficiency of vitamin K-dependent clotting factors, arises at:

Variants of answer:

- a) acholia;
- b) enteropathies;
- c) liver disease;
- d) stomach disease;
- e) coumarin drugs intake.

### 19. Causes of DIC syndrome are:

Variants of answer:

- a) amniotic fluid embolism;
- b) malignant tumors;
- c) sepsis;
- d) burns, frostbite;
- e) heart failure;
- f) crush syndrome.

#### 20. The first stage of DIC is mainly related to:

- a) activation of fibrinolysis;
- b) activation of hemostasis;
- c) depletion of clotting factors;
- d) inhibition of fibrinolysis;
- e) activation of primary anticoagulants.

### 21. At I stage of DIC syndrome:

Variants of answer:

- a) blood clotting time is shortened;
- b) blood clotting time is prolonged;
- c) activated partial thromboplastin time is prolonged;
- d) activated partial thromboplastin time is shortened;
- e) paracoagulation tests positive;
- f) paracoagulation tests negative.

### 22. The second stage of DIC is mainly related to:

Variants of answer:

- a) increase a number of platelets;
- b) activation of hemostasis;
- c) depletion of clotting factors;
- d) inhibition of fibrinolysis;
- e) activation of primary anticoagulants;

### 23. At II stage of DIC syndrome:

Variants of answer:

- a) blood clotting time is shortened;
- b) blood clotting time is prolonged;
- c) activated partial thromboplastin time is prolonged;
- d) activated partial thromboplastin time is shortened;
- e) paracoagulation tests positive;
- f) paracoagulation tests negative.

## 24. At III stage of DIC syndrome:

Variants of answer:

- a) blood clotting time is shortened;
- b) blood clotting time is prolonged;
- c) activated partial thromboplastin time is prolonged;
- d) activated partial thromboplastin time is shortened;
- e) paracoagulation tests positive;
- f) paracoagulation tests negative.

## 25. Hemorrhagic manifestations of DIC syndrome are mainly due to:

- a) depletion of fibrinogen;
- b) depletion of antithrombin-III;
- c) thrombocytopenia;
- d) inhibition of fibrinolysis and proteolysis.

### 26. Causes of angiopathy are:

Variants of answer:

- a) allergic reaction;
- b) diabetes mellitus;
- c) hypovitaminosis C and P;
- d) hepatitis;
- e) infectious diseases.

### 27. At angiopathy:

Variants of answer:

- a) duration of bleeding is shortened;
- b) duration of bleeding is prolonged;
- c) paracoagulation tests positive;
- d) paracoagulation tests negative;
- e) antithrombin III reduced;
- f) antithrombin III norm.

### 28. Specify a states accompanied by acceleration of blood clotting:

Variants of answer:

- a) atherosclerosis;
- b) thrombocytopenia;
- c) rheumatism;
- d) diffuse liver disease;
- e) hypo- and avitaminosis K.

### 29. Causes of thrombophilia are:

Variants of answer:

- a) acute hemolysis;
- b) acute radiation sickness;
- c) heart failure;
- d) sepsis;
- e) hepatitis;
- f) burns, frostbite.

## 30. Specify pathological conditions and diseases combined with hypercoagulability:

- a) deficiency of antithrombin-III;
- b) systemic atherosclerosis;
- c) excessive synthesis of prostacyclin;
- d) prostacyclin deficiency;
- e) thrombocytosis;
- f) deficiency of tissue plasminogen activator.

## STANDARD OF ANSWERS TO THE TEST TASKS

| $N_{\underline{0}}$                                                 | Correct  | $N_{\underline{0}}$ | Correct       | $N_{\underline{0}}$ | Correct       | $N_{\underline{0}}$ | Correct       |  |  |  |  |  |
|---------------------------------------------------------------------|----------|---------------------|---------------|---------------------|---------------|---------------------|---------------|--|--|--|--|--|
| question                                                            | answers  | question            | answers       | question            | answers       | question            | answers       |  |  |  |  |  |
| PATHOPHYSIOLOGY OF BLOOD. CHANGES IN TOTAL BLOOD VOLUME. BLOOD LOSS |          |                     |               |                     |               |                     |               |  |  |  |  |  |
| 1                                                                   | a, b     | 9                   | b,, c ,f      | 17                  | b             | 25                  | b             |  |  |  |  |  |
| 2                                                                   | a, c, d  | 10                  | a             | 18                  | a, d          | 26                  | a, b, c, e    |  |  |  |  |  |
| 3                                                                   | a, b, c  | 11                  | b, d, e       | 19                  | b             | 27                  | e             |  |  |  |  |  |
| 4                                                                   | С        | 12                  | a, b, c       | 20                  | С             | 28                  | a             |  |  |  |  |  |
| 5                                                                   | a, b     | 13                  | b, c, e, f    | 21                  | b, c          | 29                  | a             |  |  |  |  |  |
| 6                                                                   | a        | 14                  | a, b, c       | 22                  | a             | 30                  | a, b, d, e    |  |  |  |  |  |
| 7                                                                   | b, c, d  | 15                  | b             | 23                  | b             |                     |               |  |  |  |  |  |
| 8                                                                   | a        | 16                  | b, d          | 24                  | c             |                     |               |  |  |  |  |  |
| PATHOPHYSIOLOGY OF BLOOD. PATHOPHYSIOLOGY OF ERYTHROCYTES.          |          |                     |               |                     |               |                     |               |  |  |  |  |  |
| DYSERYTHROPOIETIC ANEMIAS                                           |          |                     |               |                     |               |                     |               |  |  |  |  |  |
| 1                                                                   | a, b, e  | 9                   | a, c, d       | 17                  | a, c, e       | 25                  | b, c, d, e    |  |  |  |  |  |
| 2                                                                   | С        | 10                  | a, d          | 18                  | a, c, d       | 26                  | a, b, c, f    |  |  |  |  |  |
| 3                                                                   | a, b, e  | 11                  | a, b, c       | 19                  | a, c, d, f    | 27                  | b, d, e       |  |  |  |  |  |
| 4                                                                   | a, e     | 12                  | a, b, c       | 20                  | b, e          | 28                  | a, b, d, e, f |  |  |  |  |  |
| 5                                                                   | b, c, d  | 13                  | b, c, d       | 21                  | c, d, e, f    | 29                  | a, c, d, f    |  |  |  |  |  |
| 6                                                                   | b, d     | 14                  | b, e, f       | 22                  | b, c          | 30                  | d             |  |  |  |  |  |
| 7                                                                   | a, d     | 15                  | a, b, d, e    | 23                  | a, c, d, e, f |                     |               |  |  |  |  |  |
| 8                                                                   | b, c, d  | 16                  | a, b          | 24                  | a, b, c, d, e |                     |               |  |  |  |  |  |
| PATHOPHYSIOLOGY OF BLOOD. HEMOLYTIC ANEMIAS. ERYTHROCYTOSIS         |          |                     |               |                     |               |                     |               |  |  |  |  |  |
| 1                                                                   | a, b     | 9                   | b, d          | 17                  | a             | 25                  | a, c, e       |  |  |  |  |  |
| 2                                                                   | d        | 10                  | a, b, d       | 18                  | b, d, e       | 26                  | a, b, e       |  |  |  |  |  |
| 3                                                                   | a, b, c  | 11                  | a, b          | 19                  | a, c, d       | 27                  | b, d          |  |  |  |  |  |
| 4                                                                   | c, d, e  | 12                  | a, b, d, e, f | 20                  | b, c, d       | 28                  | b             |  |  |  |  |  |
| 5                                                                   | c, d     | 13                  | a             | 21                  | a, b          | 29                  | a, c, e       |  |  |  |  |  |
| 6                                                                   | a        | 14                  | c, e          | 22                  | a, b, c, d    | 30                  | b, c          |  |  |  |  |  |
| 7                                                                   | c, d, e  | 15                  | a, c, e       | 23                  | a, b, c       |                     |               |  |  |  |  |  |
| 8                                                                   | a, c     | 16                  | b, e          | 24                  | d             |                     |               |  |  |  |  |  |
| PATHOPHYSIOLOGY OF LEUKON. CHANGES IN QUANTITATIVE                  |          |                     |               |                     |               |                     |               |  |  |  |  |  |
|                                                                     |          |                     | E COMPOSI     |                     |               |                     |               |  |  |  |  |  |
| 1                                                                   | b, e     | 9                   | a, d          | 17                  | a, b, e       | 25                  | b, d, e, f    |  |  |  |  |  |
| 2                                                                   | b        | 10                  | a, d, e, f    | 18                  | b, c          | 26                  | b             |  |  |  |  |  |
| 3                                                                   | e        | 11                  | b, d, e       | 19                  | b, c, f       | 27                  | a, c, e       |  |  |  |  |  |
| 4                                                                   | a, b, c  | 12                  | b             | 20                  | a, d, e       | 28                  | c, d          |  |  |  |  |  |
| 5                                                                   | С        | 13                  | b, d          | 21                  | b, c, e       | 29                  | a, b, c, d, f |  |  |  |  |  |
| 6                                                                   | a, d, e  | 14                  | a, b, d       | 22                  | a, d          | 30                  | c, d, e       |  |  |  |  |  |
| 7                                                                   | e, f     | 15                  | a, c, e       | 23                  | a, b, d, f    | ]                   |               |  |  |  |  |  |
| 8                                                                   | a, e, f  | 16                  | a, c, e, f    | 24                  | a, b, d, e    |                     |               |  |  |  |  |  |
| HEMOBLASTOSIS. LEUKEMIA                                             |          |                     |               |                     |               |                     |               |  |  |  |  |  |
| 1                                                                   | С        | 9                   | a, c, e       | 17                  | a, e, f       | 25                  | b             |  |  |  |  |  |
| 2                                                                   | a, d, e  | 10                  | a, b, c       | 18                  | d             | 26                  | a, e          |  |  |  |  |  |
| 3                                                                   | c c      | 11                  | e             | 19                  | a, d          | 27                  | c, e          |  |  |  |  |  |
| 3                                                                   | <u> </u> | 11                  | · ·           | 1/                  | u, u          | 21                  |               |  |  |  |  |  |

| $N_{\underline{0}}$            | Correct    | <u>№</u> | Correct       | No       | Correct       | No       | Correct       |  |  |  |  |
|--------------------------------|------------|----------|---------------|----------|---------------|----------|---------------|--|--|--|--|
| question                       | answers    | question | answers       | question | answers       | question | answers       |  |  |  |  |
| 4                              | b          | 12       | c             | 20       | a, b, c       | 28       | b, d, e       |  |  |  |  |
| 5                              | b          | 13       | d             | 21       | b             | 29       | b, d          |  |  |  |  |
| 6                              | b          | 14       | a, b, d       | 22       | a, d, e       | 30       | a, b, c       |  |  |  |  |
| 7                              | c, d       | 15       | a, b, d       | 23       | c, d          |          |               |  |  |  |  |
| 8                              | С          | 16       | С             | 24       | a, b, e       |          |               |  |  |  |  |
| PATHOLOGY OF HEMOSTASIS SYSTEM |            |          |               |          |               |          |               |  |  |  |  |
| 1                              | a, c, d, e | 9        | a, b, d, e    | 17       | b             | 25       | a, c          |  |  |  |  |
| 2                              | d, e       | 10       | b, c, f       | 18       | a, b, c, e    | 26       | a, b, c, e    |  |  |  |  |
| 3                              | b, c, d, f | 11       | c, d          | 19       | a, b, c, d, f | 27       | b, d, f       |  |  |  |  |
| 4                              | b, d, f    | 12       | c             | 20       | b             | 28       | a, c          |  |  |  |  |
| 5                              | a, b, c, e | 13       | a, b, c, d, f | 21       | a, d, e       | 29       | a, c, d, f    |  |  |  |  |
| 6                              | b, d, f    | 14       | c, f          | 22       | С             | 30       | a, b, d, e, f |  |  |  |  |
| 7                              | a, b, d    | 15       | b, c, f       | 23       | a, d, e       |          |               |  |  |  |  |
| 8                              | a, b, d, e | 16       | a, b, d, e    | 24       | b, c, e       |          |               |  |  |  |  |

## **LITERATURE**

- 1. Литвицкий,  $\Pi$ .  $\Phi$ . Задачи и тестовые задания по патофизиологии: учеб. пособие /  $\Pi$ .  $\Phi$ . Литвицкий; под ред.  $\Pi$ .  $\Phi$ . Литвицкого. M.: ГЭОТАР-МЕД, 2002. 384 с.
- 2. Литвицкий,  $\Pi$ .  $\Phi$ . Задачи и тестовые задания по патофизиологии: учеб. пособие /  $\Pi$ .  $\Phi$ . Литвицкий; под ред.  $\Pi$ .  $\Phi$ . Литвицкого. перераб. и доп. М.: ГЭОТАР-МЕД, 2011. 293 с.
- 3. *Новиков, Д. К.* Клиническая иммунология: учеб. пособие / Д. К. Новиков, П. Д. Новиков. Витебск: ВГМУ, 2006. 392 с.
- 4. Патофизиология: учебник: в 2 т. / под ред. В. В. Новицкого, Е. Д. Гольдберга, О. И. Уразовой. 4-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2009. Т. 1. 848 с. Т. 2. 640 с.
- 5. Патологическая физиология: учеб. / под ред. Н. Н. Зайко, Ю. В. Быця. 5-е изд. М.: МЕДпресс-информ, 2008. 635 с.
- 6. Тестовые задания по курсу патофизиологии / под ред. проф. Г. В. Порядина, Ж. М. Салмаси. 2-е изд. М.: ГОУ ВУНЦМ МЗ РФ, 2000. 352 с.

#### Учебное издание

Кидун Кристина Андреевна

#### ТЕСТОВЫЕ ЗАДАНИЯ ПО ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

(на английском языке)

Учебно-методическое пособие для студентов 3 курса факультета по подготовке специалистов для зарубежных стран, обучающихся на английском языке по специальности «Лечебное дело», медицинских вузов В трех частях

#### Часть 2 Патофизиология крови

Редактор *Т. М. Кожемякина* Компьютерная верстка *Ж. И. Цырыкова* 

Подписано в печать 13.11.2017. Формат  $60\times84^{1}/_{16}$ . Бумага офсетная 80 г/м². Гарнитура «Таймс». Усл. печ. л. 2,56. Уч.-изд. л. 2,8. Тираж 130 экз. Заказ № 534.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/46 от 03.10.2013. Ул. Ланге, 5, 246000, Гомель.