
MINISTRY OF HEALTH CARE REPUBLIC OF BELARUS GOMEL STATE MEDICAL UNIVERSITY

Normal Physiology Department

V. A. MELNIK, Y. I. BREL, N. B. SHEVKO, S. N. MELNIK

HUMAN PHYSIOLOGY (Illustrations, tables, schemes)

Educational-methodical guidance for overseas students in English medium

Gomel 2007

Авторы:

В. А. Мельник, Ю. И. Брель, Н. Б. Шевко, С. Н. Мельник.

Рецензент:

заведующая кафедрой патологической физиологии Учреждения образования «Гомельский государственный медицинский университет», кандидат медицинских наук, доцент *Т. С. Угольник*

H 83 Human physiology (illustrations, tables, schemes): educational-methodical guidance for overseas students in English medium = Физиология человека: уч.-метод. пособие для иностранных студентов, обучающихся на английском языке / авт.: В. А. Мельник, Ю. И. Брель, Н. Б. Шевко, С. Н. Мельник; под ред. проф. Э. С. Питкевича; пер. на англ. яз. Ю. И. Брель, В. А. Мельника / Гомель: УО «Гомельский государственный медицинский университет», 2007. — 112 с.

ISBN 978-985-506-077-3

В пособии представлен наглядный материал по нормальной физиологии, для студентов факультета по подготовке специалистов для зарубежных стран, которые обучаются на английском языке.

Авторами представлены рисунки, таблицы, схемы по всем разделам нормальной физиологии. В конце пособия располагаются базовые константы физиологических систем в Международной системе физических единиц (СИ).

Утверждено и рекомендовано к изданию Центральным учебным научно-методическим советом Учреждения образования «Гомельский государственный медицинский университет» 6 марта 2007, протокол № 2.

> УДК 612 (076.5) ББК 28.073я7

ISBN 978-985-506-077-3

© Учреждение образования «Гомельский государственный медицинский университет», 2007

FOREWORD

The present guidance contains illustrative material in normal physiology, which can be used by the students of faculty of overseas students in English medium in Educational establishment «Gomel State Medical University» during preparation for the classes. All material corresponds to Program in Normal physiology for students in higher medical schools, No. 08-14/5941 approved by the Ministry of Health of the Republic of Belarus.

The guidance contains illustrations, tables and schemes for all the topics of normal physiology course.

Conclusion includes main constants of a healthy person.

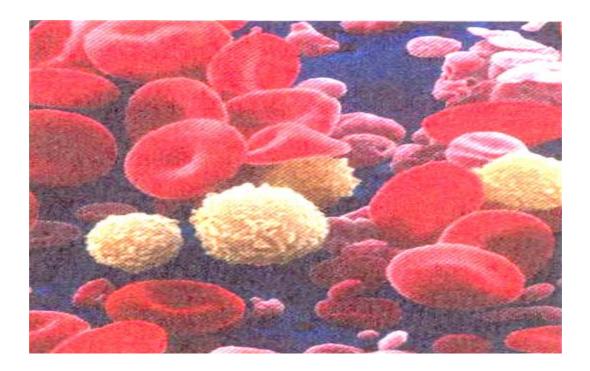
The authors realize that because of the small volume of this guidance they didn't have the opportunity to include all the possible aspects of the normal physiology course. More wide information can be received from the list of literature given in the end of guidance.

Authors will be grateful to all who will make any comments upon this guidance; these will be taken into consideration contributed into development of a new edition of the guidance.

предисловие

Настоящее пособие представляет собой наглядный материал по нормальной физиологии, который может использоваться студентами факультета по подготовке специалистов для зарубежных стран УО «Гомельский государственный медицинский университет», обучающихся на английском языке при подготовке к занятиям. Материал пособия соответствует Программе по нормальной физиологии для студентов лечебно-профилактического факультета высших медицинских учебных заведений № 08-14/5941, утвержденной Министерством здравоохранения Республики Беларусь от 3 сентября 1997 г.

В иллюстрированном пособии авторами представлены современные схемы, таблицы и рисунки по всем разделам нормальной физиологии.

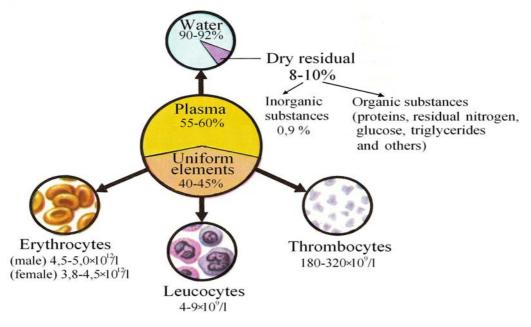

В заключении представлены основные константы здорового человека.

При этом авторы осознают, что в данном пособии в связи с небольшим его объемом не представилось возможным осветить подробно все аспекты рассматриваемых разделов нормальной физиологии. Более расширенные сведения можно получить из списка литературы расположенного в конце пособия.

Авторы будут весьма благодарны всем, кто сочтет возможным высказать свои критические замечания в адрес предлагаемого пособия, которые будут восприняты как выражение желания оказать помощь в его улучшении при последующим переиздании.

Unite 1

PHYSIOLOGY OF BLOOD SYSTEM



Blood along with interstitial fluid and lymph is an important component of the internal environment of an organism. Changes of physical and chemical properties of blood are the important mechanism in pathogenesis of many diseases and are used for diagnostics, evaluation of the efficiency of treatment and prognosis.

System of blood includes:

- 1. Blood (in vessels).
- 2. Organs of haemopoiesis (red bone marrow, lymph nodes, spleen, thymus gland).
- 3. Organs of blood destruction (liver, bone marrow, spleen).
- 4. Neurohumoral apparatus.

Blood consists of plasma and uniform elements (erythrocytes, thrombocytes, leucocytes).

Scheme 1.1. — The composition of blood (by Korobkov A. V., Chesnokova S. A., 1986)

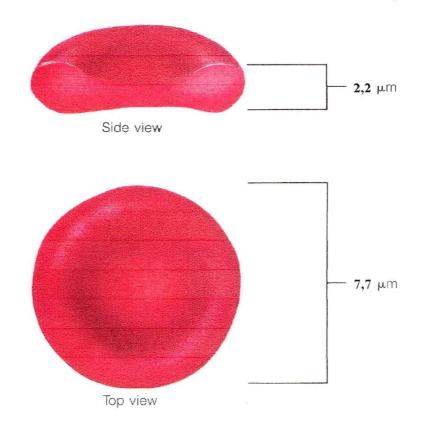
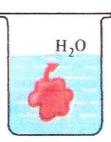
Interrelation between uniform elements and plasma		Variant of volemia	Hematocrit number	
			NORMOVOLEMIA	
UE 0,45%	plasma 0,55%	<i></i> 0	Simple	normal
UE 0,35%	plasma 0,65%	Ó	Oligocythemic	below normal
UE 0,55%	plasma,45%		Polycythemic	above normal
			HYPOVOLEMIA	
UE 0,45%	plasma		Simple	normal
UE 0,35%	plasma		Oligocythemic	below normal
UE 0,55%	plasma,45%		Polycythemic	above normal
			HYPERVOLEMIA	
UE 0,45%	plasma 0,55	5%	Simple	normal
UE 0,35%	plasma 0,65	5%	Oligocythemic	below normal
UE 0,55%	plasma,459	%	Polycythemic	above normal

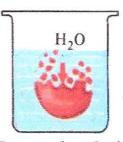
Note: UE — uniform elements of blood.

Blood basic functions:

- 1. Transport of various substances.
- 2. Respiratory function.
- 3. Trophic or nutritional function.
- 4. Excretory function.
- 5. Blood participates in thermoregulation.
- 6. Homeostatic function.
- 7. Blood provides water-salt exchange between blood and tissues.
- 8. Protective function.
- 9. Correlative function.
- 10. Blood maintenances the constancy of base-alkaline state due to buffer systems.

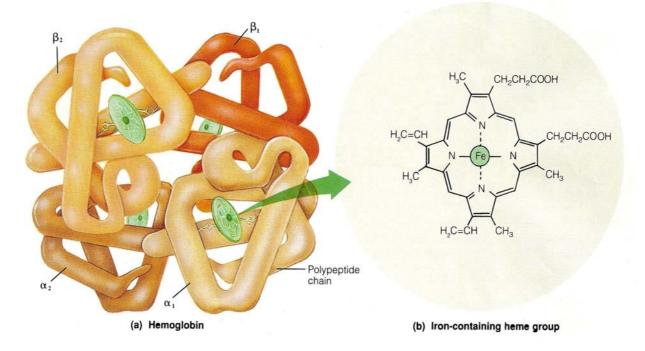
	Con	nponents		Amount	Functions
Water	•			90–92%	solvent for other substances
Dry resi- dual	Organic substances	Proteins:	albumins	45 g/l	 form 80% of colloid-osmotic pressure participate in regulation of water-salt balance. participate in transport of many substances bind some hormones form protein reserve
			globulins	20–35 g/l	 transport of hormones, vitamins, microelements Immune function (γ-globulins)
			fibrinogen	3 g/l	• participates in blood coagulation.
		Glucose		3,88–6,10 millimole/l	• mainly energetic function
		Triglyceric		0,40–1,81 millimole/l	• they are present in blood mainly in forms of lipoproteins and chylomicrons — forms
		Cholesteri	n	3,64–6,76 millimole/l.	which transport lipids to different organs and tissues
		Residual n	C	14,3–28,5 millimole/l	• It consists mainly of end products of me- tabolism which are transported by blood to the organs of excretion
	Inorganic substances	Na ⁺ , K ⁺ , C rides, phos drocarbona	phates, hy-	0,9%	 participate in maintenance of osmotic pressure; participate in processes of excitation and contraction of cells participate in coagulation of blood (Ca2+); participate in the regulation of acidbase state


Figure 1.1. — The form and size of erythrocyte

Isotonic solution of NaCl (0,9 %)

Hypertonic solution of NaCl (> 0,9 %)



Hypotonic solution of NaCl (<0,9 %)

Figure 1.2. — The state of erythrocyte in solutions with different concentrations of NaCl (in hypotonic solution there is an osmotic hemolysis) (by Korobkov A. V., Chesnokova S. A., 1986)

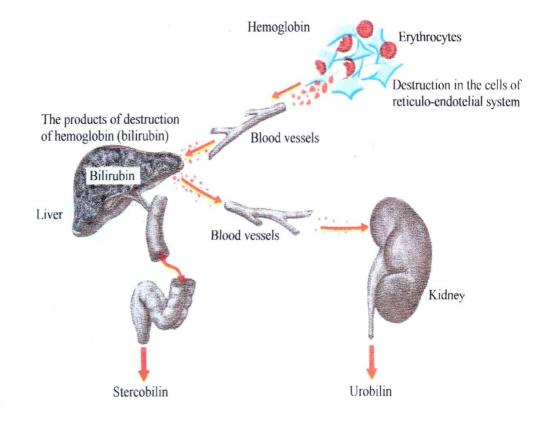
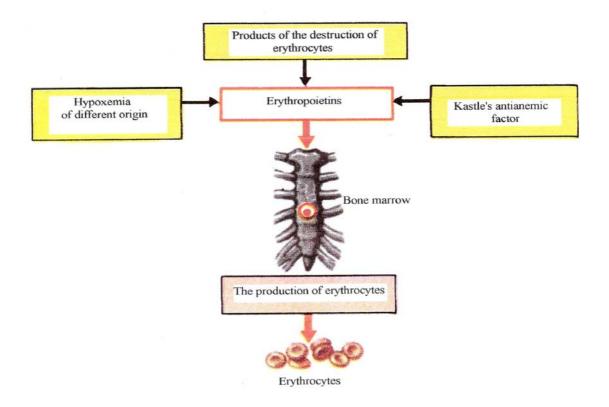
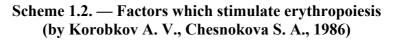
Functions of erythrocytes:

- 1. Transition of O_2 (due to hemoglobin).
- 2. Transition of CO_2 (due to hemoglobin).
- 3. Protective (absorption of harmful substances, production of antibiotic-eritrin).
- 4. Regulation of water-and-salt exchange.
- 5. Transition of nutrients.
- 6. Participation in regulation of erythrogenesis.

Figure 1.3. — Structure of hemoglobin (by Elaine N. Marieb, 1989)

(a) The intact hemoglobin molecule is composed of the protein globin bound to the ironcontaining heme pigments. Each globin molecule has four polypeptide chains: two alpha (α) chains and two beta (β) chains. Each chain is complexed with a heme group, shown as a beaded structure.

(b) Structure of a single heme group.

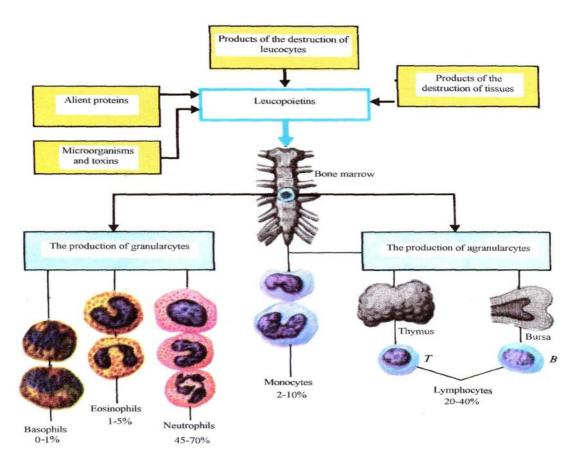

Figure 1.4. — The destruction of hemoglobin (by Korobkov A. V., Chesnokova S. A., 1986)

Table 1.3. — Cla	assification o	f leucocytes
------------------	----------------	--------------

Т	ype of cells	Amount (in %)	Functions	Morphology of cell
Granular leucocytes	<u>Neutrophils:</u> myelocytes metamyelocytes stab neutrophils segmentonuclear	$0 \\ 0-1 \\ 1-5 \\ 45-70$	They possess high bactericidal ac- tivity. They have receptors to IgG, to proteins of complement on their membrane.	segmentonuclear neutrophil
	Eosinophils	1-5	 phagocytosis neutralization of toxins of the albuminous nature destruction of alien proteins and antigen-antibody complexes production of plasminogen (participate in fibrinolysis) cytotoxic effect on helminthes, their eggs 	eosinophil
	Basophils	0-1	They produce histamine (it dilates capillaries). and heparin(it prevents coagula- tion of blood) they have receptors to IgE	basophil
Agranular leucocytes	Lymphocytes $T - lymphocytes$ (provide cellularimmunity):a) T - helpersb) T - suppressorsc) T - killersd) T - acceleratorsf) T-lymphocytes ofimmune memory $B - lumphocytes$ (provide non-cellular immunity)a) plasma cellsb) B - killersc) B - helpersd) B - suppressorsf) B-lymphocytes ofimmune memory	20-40	 antibody formation destruction of alien cells provide reaction of a transplant rejection keep immune memory destruction of own mutant cells state of sensibilization 	lymphocyte
	Monocytes	2-10	In tissues they turn into tissue macrophages and perform phagocy- tosis of microorganisms, died leuco- cytes, damaged cells of a tissue.	monocyte

Scheme 1.3 — Factors which stimulate leucopoiesis (by Korobkov A.V., Chesnokova S.A., 1986)

Blood groups	Erythrocytes	Plasma or serum
	Agglutinogen	Agglutinin
I (0)	0	α, β
II (A)	Α	ß
III (B)	В	α
IV (AB)	AB	0

Table 1.4. — Blood groups of system AB0

Table 1.5. — Compatibility of various blood groups

Serum group	Erythrocyte group			
	I (0)	II (A)	III (B)	IV (AB)
Ι α, β	-	+	+	+
II ß	-	-	+	+
III a	-	+	-	+
IV	-	-	-	-

Note: «+» — presence of agglutination (group incompatibility); «-» — absence of agglutination (group compatibility).

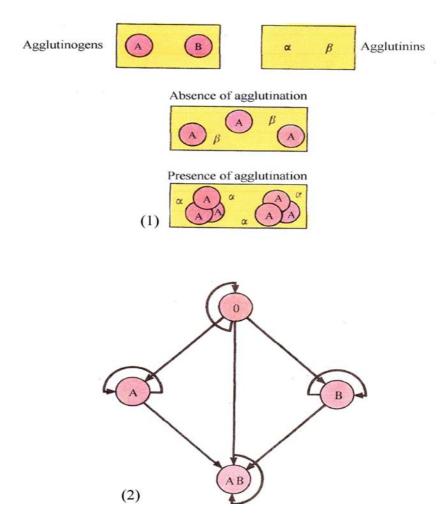


Figure 1.5. — Blood groups (by Korobkov A. V., Chesnokova S. A., 1986)

(1) Mechanism of agglutination(2) Possible variants of transfusion of blood of different groups.

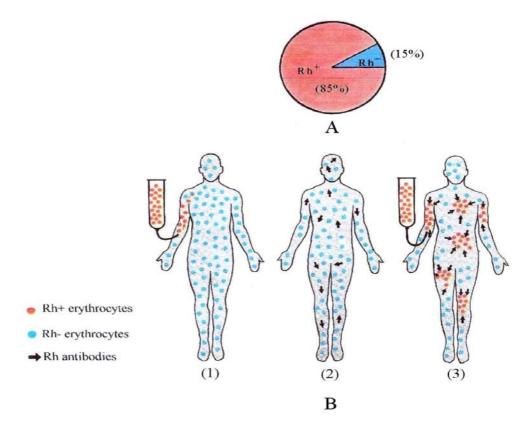
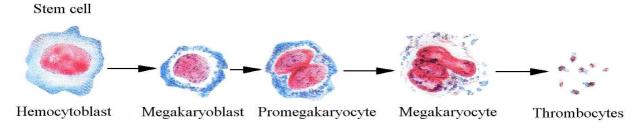


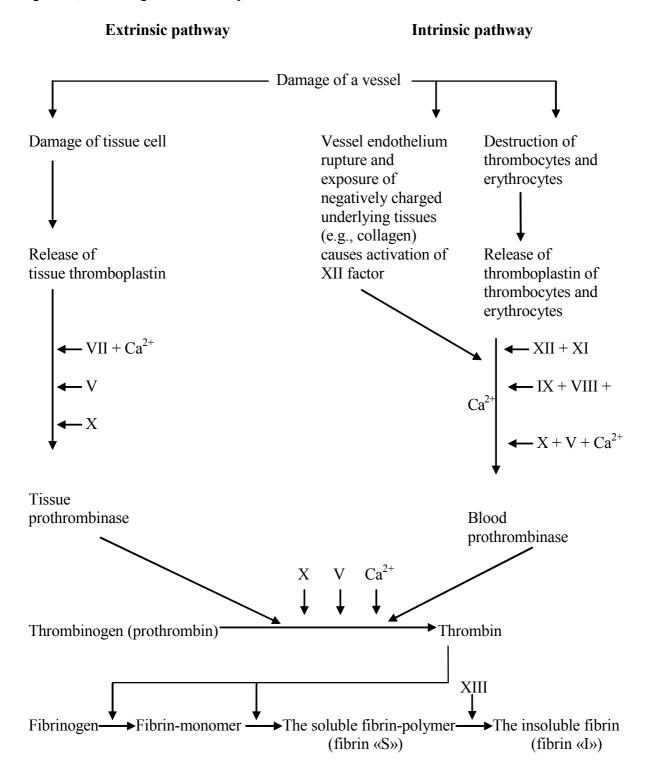
Figure 1.6. — Rhesus factor (Rh) (by Korobkov A. V., Chesnokova S. A., 1986)

A — frequency of Rh⁺ and Rh⁻ people. B — «Rhesus conflict». (1) — transfusion of Rh⁺ blood to Rh⁻ recipient. (2) — the production of Rh antibodies in the organism of recipient. (3) — the second transfusion of Rh⁺ blood to Rh⁻ recipient courses agglutination.

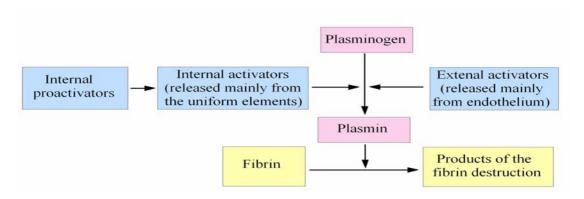


(by Korobkov A. V., Chesnokova S. A., 1986)

I — immunization of Rh⁻ mother by Rh⁺ erythrocytes of fetus.


II — the production of Rh antibodies in the organism of mother.

III — agglutination of Rh⁺erythrocytes of fetus by antibodies of mother.


Scheme 1.4. — Genesis of thrombocytes (platelets) (by Elaine N. Marieb, 1989)

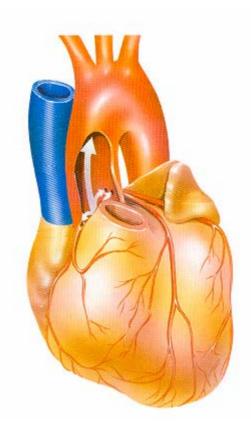
The stem cell (hemocytoblast) gives rise to cells that undergo several mitotic divisions unaccompanied by cytoplasmic division to produce the megacaryocytes. The cytoplasm of the megakaryocyte becomes compartmentalized by membranes, and the plasma membrane then fragments, liberating the thrombocytes.

Note: uniform elements of blood get stuck into fibrin nets, thus forming the blood thrombus. Such thrombus is subject to compression influenced by protein trombostenin. At compression of thrombus the periphery of the wound are closing.

Scheme 1.5. — Coagulating hemostasis

Scheme 1.6. — The activation of fibrinolysis (by K. Kluft, A. Gi, 1979)

Table 1.6. — Humoral factors which regulate haemopoesis


Humoral factors which regulate erythropoiesis			ooral factors ulate leucopoiesis	Humoral factors which regulate thrombocytopoiesis	
Factor	The role of the factor	Factor	The role of the factor	Factor	The role of the factor
Iron	In the structure of hemoglo- bin there is iron-containing heme group	Products of leu- kocytes destruc- tion	The more destruction of leucocytes is, the higher is their formation.	Throm- bocyto- poietins of short	They are formed in lien and stimulate release of thrombo- cytes into blood.
Vitamin B ₁₂	It is necessary for normal formation growth and of erythrocytes	Tissue destruc- tion products	They stimulate leu- copoiesis	action.	
Kastle's anti- anemic fac- tor	It is necessary for the absorption of vitamin B_{12} in the intestine	Microbes and their toxins.	They stimulate leu- copoiesis	Throm- bocyto- poietins of long	They are contained in blood plasma and stimulate for- mation of throm-
Ascorbic acid	It promotes transmitting Fe^{+++} into Fe^{++} and absorption of iron in the intestine	Leukopoietins	They stimulate leu- copoiesis	action.	bocytes in the bone marrow
Erythropoie- tins	They influence on cells- predecessors of erythro- cytes, stimulate their pro- liferation synthesis of he- moglobin	Adrenalin, hy- drocortisone	They couse leukocyto- sis due to release of leucocytes from blood depot (but glucocorti- coids decrease the for- mation of eosinophils and lymphocytes)		
Products of erythrocytes destruction	They stimulate erythropoi- esis (autoregulation). The amount of the destroyed erythrocytes is equal to that of newly formed erythro- cytes (self-control).	Interleukins	They stimulate leu- copoiesis		
Androgens adrenalin, thyroxin, somatotropic hormone	They stimulate erythrogenesis				
Estrogens	They decrease erythro- genesis				

Kind	Examples	Positive property	Negative property	The cases of using
of the solution Salt solutions	of the solutions Saline solution — (0,85–0,9% NaCl), Ringer-Lock's solution.	of the solutions They do not cause allergic reactions (sensibilization)	of the solutions They are quickly released from blood vessels	the solutions They can fill the amount of the lost blood within short period of time. They can be used for normalization of water- salt exchange and acid- base state
Synthetic col- loid solutions	Reopoliglucin, Macrodex, Haemodez	They stay in the blood vessels for a long period of time They can bind toxic substances	They can cause al- lergic reactions (sensibilization)	They can fill the amount of the lost blood within long period of time. They can be used for improving of hemody- namics at the state of shock. They can be used at the state of intoxication.
Protein preparations	Solution of al- bumin (5%), Solution of gela- tin (8%) Native, preserved and fresh frozen plasma	-////-	The preparations of plasma can contain dangerous infections agents (for exam- ple – HIV, virus of hepatitis B)	-////-
Preparations of blood	Preserved blood and plasma, Eryth- rocytes mass, Leukocytes (fresh), Thrombocytes (fresh)	Different kinds of preparations have spe- cial qualities accord- ing to the compo- nents of preparation	The preparations of blood can contain dangerous infections agents (for exam- ple – HIV, virus of hepatitis B). The preparations of blood have antigenic qualities and can cause posttransfu- sion complications.	Different kinds of prepa- rations can be used ac- cording to what is nec- essary for a patient (for example at decreased amount of thrombocytes fresh thrombocytes can be transfused)

Table 1.7. — Blood substituting solutions

Unite 2

PHYSIOLOGY OF CARDIOVASCULAR SYSTEM

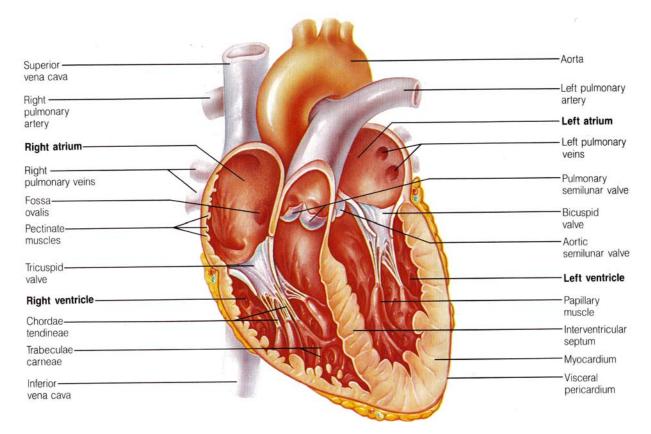


Figure 2.1. — Anatomy of the heart (frontal section showing inferior chambers and valves) (by Elaine N. Marieb, 1989)

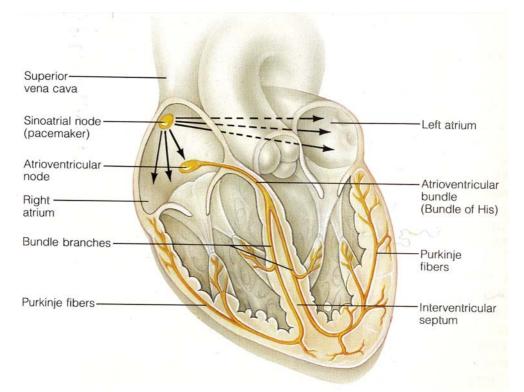
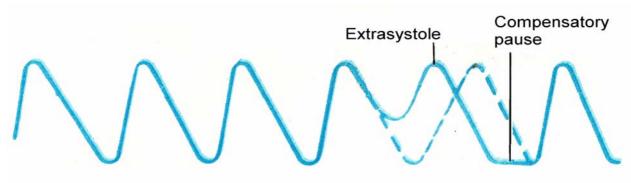
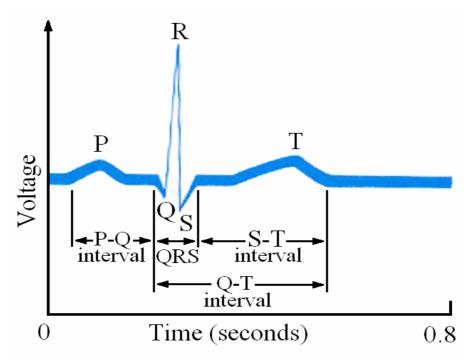
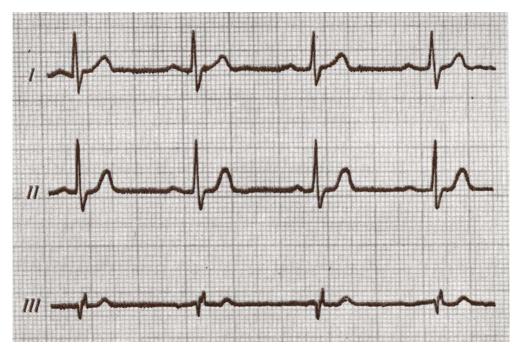
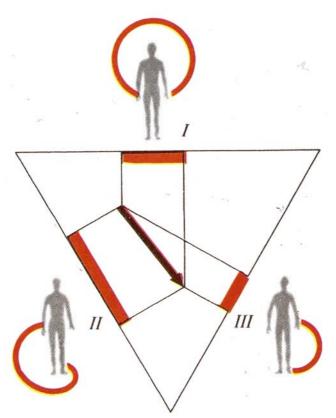
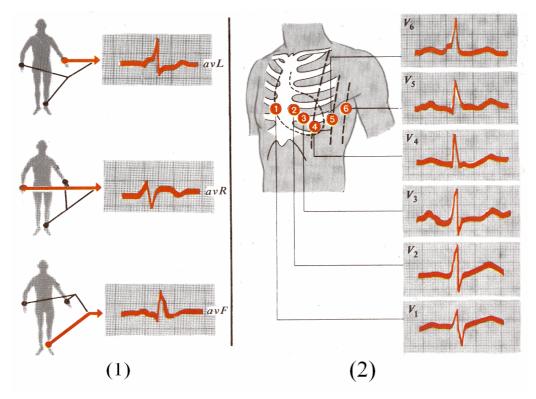
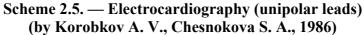




Figure 2.2. — The conduction system of the heart (by Elaine N. Marieb, 1989)


The depolarization wave is initiated by the sinoatrial node and then passes through the atrial myocardium to the atrioventricular node, bundle of His, the right and the left bundle branches, and the Purkinje fibers in the ventricular myocardium.

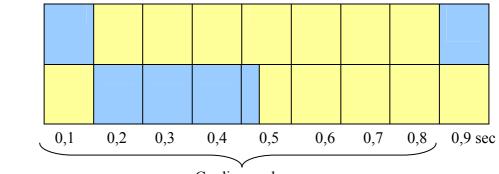

Scheme 2.1. — Extrasystole (schematical illustration)


Scheme 2.2. — An electrocardiogram and its three positive and two negative waves



Scheme 2.3. — Electrocardiography (bipolar leads from extremities, Einthowen method)

Scheme 1.4 – Scheme which explains the difference between amplitudes of wave R in three bipolar (standard) leads (I, II, III) from extremities (Einthowen method) (by Korobkov A.V., Chesnokova S.A., 1986)



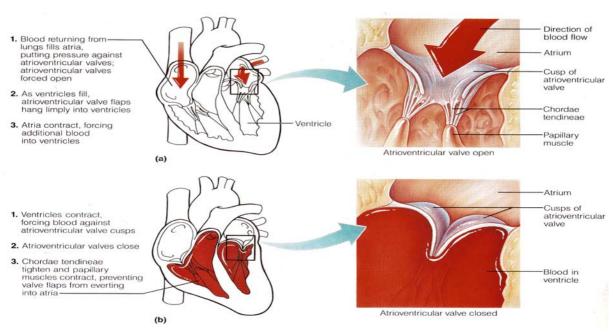
(1) — Unipolar leads from extremities (Goldberger's method)

(2) — Unipolar thoracal (pre-cardiac) leads (Wilson method)

	Period of <i>extension</i> — 0,08 sec	Phase of <i>asynchronous</i> contraction — 0,05 sec	
Systole	1 errod of extension = 0,08 sec	Phase of <i>isometric</i> contraction $-0,03$ sec	
of ventricles — 0,33 sec	Period of <i>expulsion</i> — 0,25 sec	Phase of <i>fast expulsion</i> of blood — 0,12 sec	
	renod of <i>exputsion</i> — 0,25 sec	Phase of <i>slow expulsion</i> of blood — 0,13 sec	
	The <i>protodiastolic</i> period — 0,04 sec		
D' (1	The period of <i>isometric relaxation</i> — 0,08 sec		
Diastole of ventricles — 0,47 sec	Period of <i>filling</i> of ventricles	Phase of <i>fast</i> filling — 0,08 sec	
01 venulcies = 0,47 see	with blood $-0,25$ sec	Phase of <i>slow</i> filling $-0,17$ sec	
	The <i>presystolic</i> period — 0,1 sec		

Table 2.1. — Periods and phases of cardiac cycle

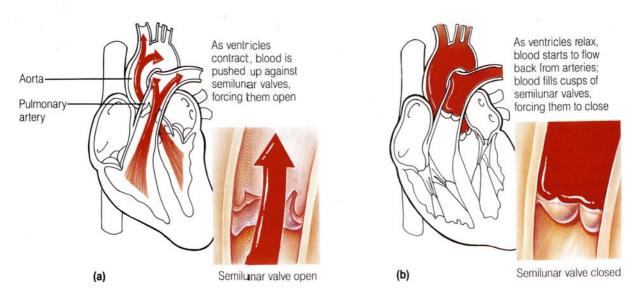
Cardiac cycle (when pulse is 75 per min)


Scheme 2.6. — Duration of systole and diastole of atriums and ventricles (during one cardiac cycle)

Systole is showed with the blue color.

Atrium

Ventricle


Diastole is showed with the yellow color.

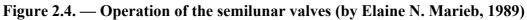


Figure 2.3. — Operation of the atrioventricular valves of the heart (by Elaine N. Marieb, 1989)

(a) — The valves open when the blood pressure exerted on their atrial side is greater than that exerted on their ventricular side;

(b) — The values are forced closed when he ventricles contract, moving their contained blood superiorly

(a) — During ventricular contraction, the valves are open and their flaps are flattened against the artery walls;

(b) — When the ventricles relax, the backflowing blood fills the valve cusps and closes the valves

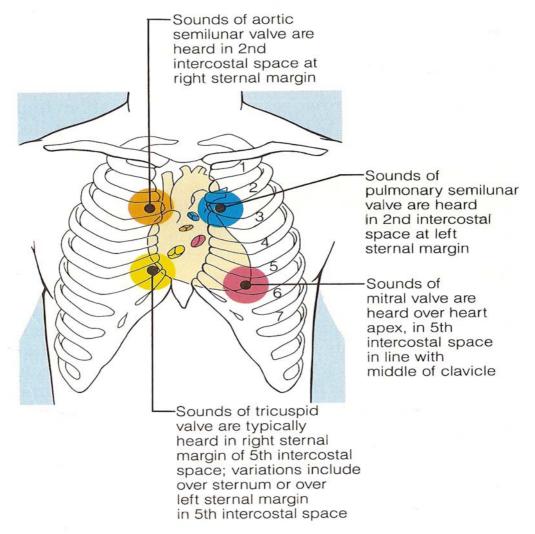


Figure 2.5 — Areas of the thoracic surface where the sounds of the heart can be best detected (by Elaine N. Marieb, 1989)

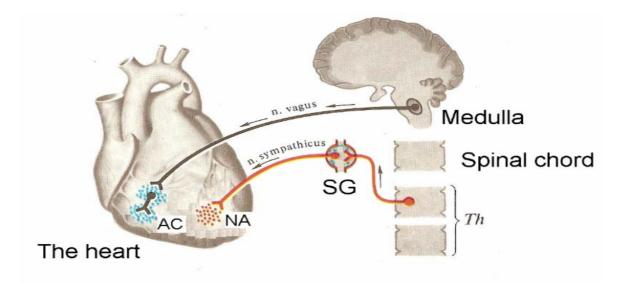
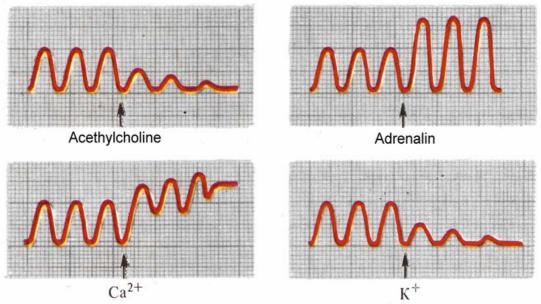



Figure 2.6 — Sympathetic and parasympathetic innervation of the heart (by Korobkov A. V., Chesnokova S. A., 1986) AC — acetylcholine; NA — noradrenalin; SG — sympathetic ganglion

Scheme 2.7. — The result of influence of increased amount of some humoral factors on the heart activity (arrows show the moment when the influence begins) (by Korobkov A.V., Chesnokova S.A., 1986)

Table 2.2. — Influence of the vegetative nervous system on the work of heart

The influence of vagus nerve	Influences of sympathetic nerve
1. Negative chronotropic effect (decreasing of	1. Positive chronotropic effect (increasing of
rhythm of contractions).	rhythm of contractions).
2. Negative inotropic effect (decreasing of	2. Positive inotropic effect (increasing of am-
amplitude of contractions).	plitude of contractions).
3. Negative bathmotropic effect (decreasing of	3. Positive bathmotropic effect (increasing of
excitability of myocardium).	excitability of myocardium).
4. Negative dromotropic effect (decreasing of	4. Positive dromotropic effect (increasing of
rate of excitation conduction in heart).	rate of excitation conduction in heart).

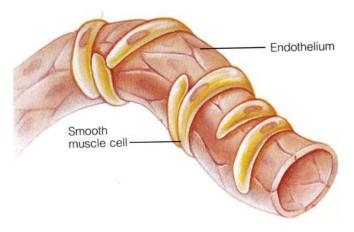
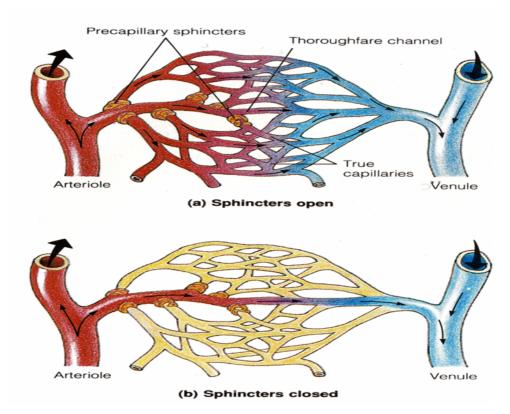
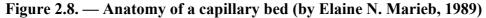




Figure 2.7. — Structure of a small arteriole (by Elaine N. Marieb, 1989)

Thoroughfare channels act as shunts to bypass the true capillaries when precapillary sphincters controlling blood entry into the true capillaries are constricted

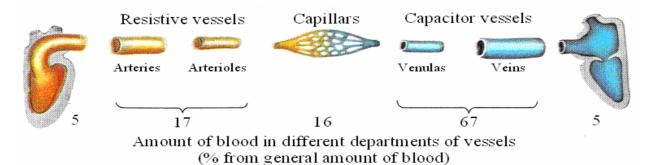


Figure 2.9. — Distribution of blood in different departments of vascular channel (by Korobkov A. V., Chesnokova S. A., 1986)

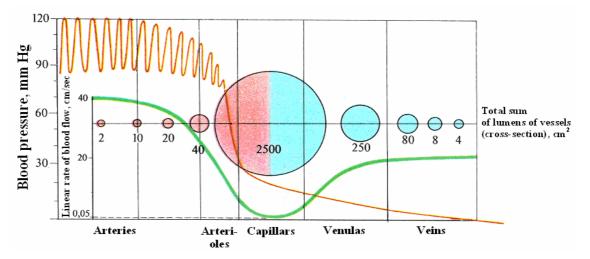
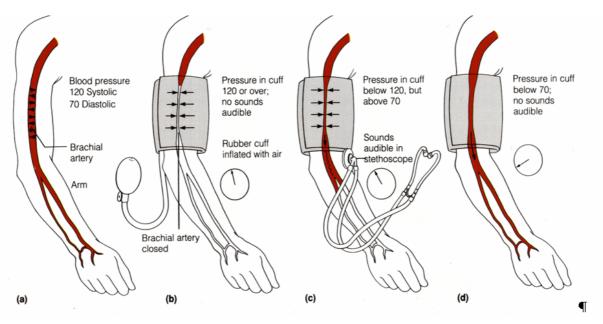
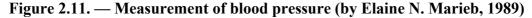
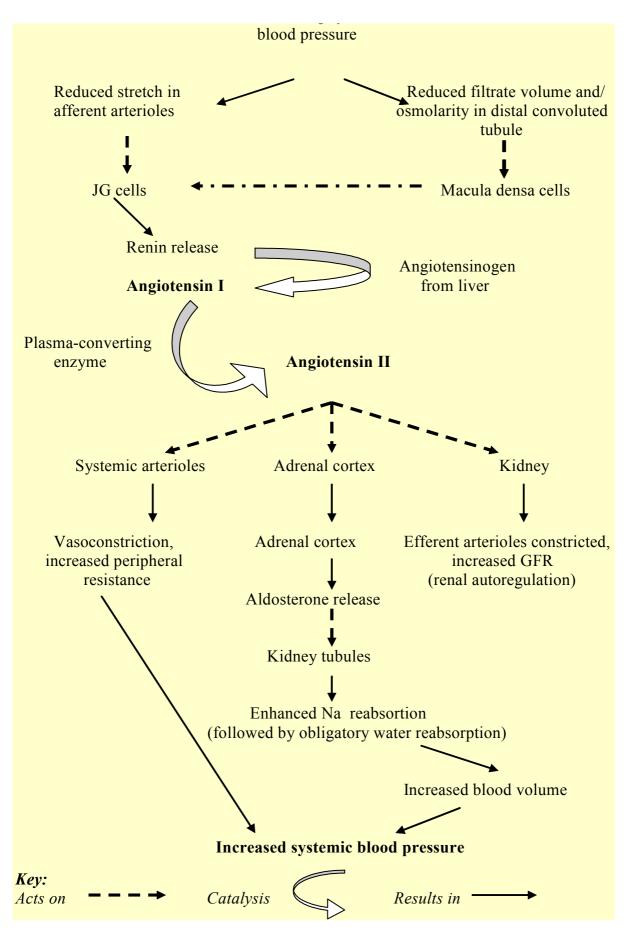




Figure 2.10. — The level of blood pressure, total sum of lumens of vessels and linear rate in different departments of vascular channel (by Korobkov A.V., Chesnokova S.A., 1986)

Factors that lead to increased systemic arterial blood pressure.

- 1. Pumping force of heart.
- 2. Peripheral resistance of vessels.
- 3. Volume of circulating blood.
- 4. Viscosity of blood.



a) The course of the brachial artery of the arm. Assume of blood pressure 120/70 in a young healthy individual.
b) The cuff of the sphygmomanometer is wrapped snugly around the arm just superior of the elbow and inflated until the cuff pressure exceeds the systolic blood pressure. At this point, blood flow into the arm is stopped and brachial pulse cannot be felt or heard.

c) The pressure of the cuff is gradually reduced while the examiner listens (auscultates) carefully for sounds in the brachial artery with a stethoscope. The pressure read as the first soft tapping sound are heard (the first point at which a small amount of blood is spurting though the constricted artery) is recorded as the systolic pressure.

d) As the pressure is reduced still further, the sounds become louder and more distinct, but when the artery is no longer constricted and blood flows freely, the sounds can now longer be heard. The pressure at which the sounds disappear is recoded as a diastolic pressure.

Scheme 2.8. — Flowchart illustrating the role in regulating blood pressure under conditions of declining systemic blood pressure (by Elaine N. Marieb, 1989)

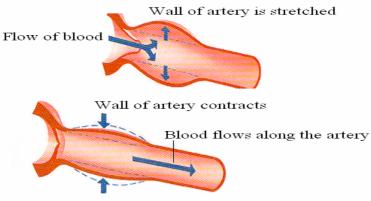


Figure 2.12. — The forming of pulse wave

Table 24	Charact	ariation	oforto	mial m	100
Table 2.4. —	Charact	CIISUCS	or and	inai pu	1120

Characteristics of pulse	Norm	Deviations	Method of definition
Heart rate:	normal (60–80 per minute)	slow, rapid	It is determined by counting of pulse within 1 minute
Rhythm:	rhythmic	arrhythmic	It is determined by comparing of duration of the intervals between the pulse beats or R-R intervals on the ECG
Filling (height)	good	satisfactory, weak, thready pulse	It is determined by the height the arterial wall rising (palpated volume of the artery under the fingers) during systole.
Strain	moderate,	firm, mild pulse	It is determined by effort of squeezing of an artery which should be made for the pulse disappearance.
Rate	normal,	rapid, slow pulse	It is determined by the rate of rising and lowering of the arterial wall.

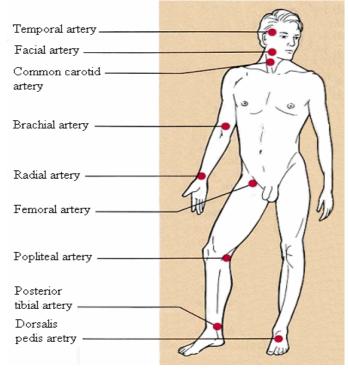
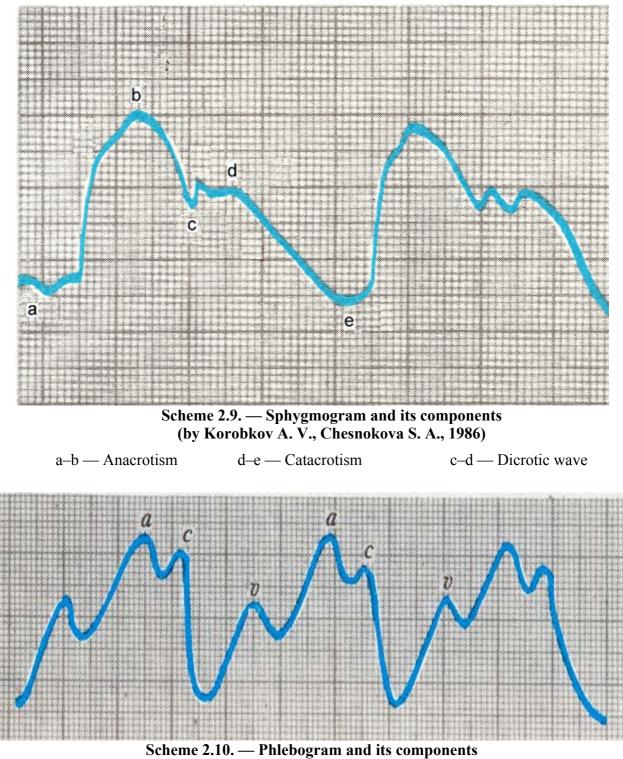



Figure 2.13. — Body sites where the pulse is most easily palpated (by Elaine N. Marieb, 1989)

(a-wave, c-wave, v-wave)

Factors, which ensure the blood-flow in veins

1. Suction action of thorax (decreasing of atmospheric pressure in thorax during inspiration promotes veins distention).

2. «Muscular pump2 (squeezing of veins at contraction of skeletal muscles pushes blood to heart; presence of valves on internal surface of some veins prevents inverse blood flow)

3. Suction action of heart (due to moving of atrioventricular septum at systole of ventricle).

4. Peristaltic contraction of walls of some veins (2–3 times a minute).

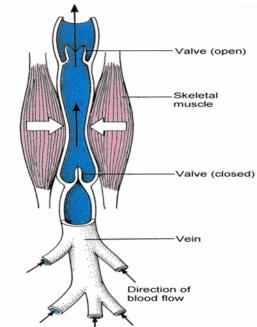
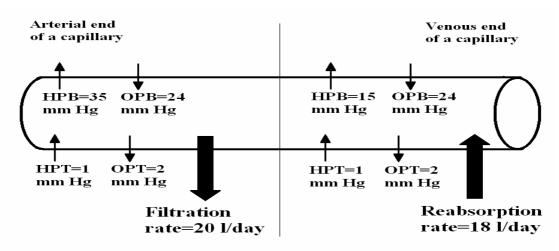



Figure 2.14. — Relationship of skeletal muscle activity to venous valve function (by Elaine N. Marieb, 1989)

Type of capillars	Structure of wall of capillars	Features of functioning	Places of localization
Somatic type	Continuous endothelial and basal envelope, big number of the small- est pores (4–5 nm in diameter)	The walls of this type of capillars are permeable for water and mineral substances	Skeletal and unstriped muscles Adipose and connective tissue Lungs Cerebral cortex
Visceral type	The capillars of this type has fenestrations (holes) with diameter $-0.1 \mu m$. Fenestrations are frequently covered with the thinnest membrane.	The walls of this type of capillars are permeable for fluids and macromolecules	Kidney Digestive canal Endocrine glands
Sinusoid type	Basal membrane is absent partially; endothelial envelope is irregular, with big intersti- tial lumens.	The walls of this type of capillars are permeable for fluids, blood cells, mac- romolecules	Bone marrow Liver Spleen.

Type of capillars	Structure of wall of capillars	Features of functioning	Places of
Somatic	Continuous endothelial and basal	The walls of this type of	Skeletal and u
type	envelope, big number of the small-	capillars are permeable for	Adipose and
	est pores (4–5 nm in diameter)	water and mineral substances	Lungs
			Cerebral cort
Visceral	The capillars of this type has	The walls of this type of	Kidney

Table 2.5. — Classification and functions of capillars

Scheme 2.11. — Forces which determine direction of fluid flows in capillary bed

HPB = hydrostatic pressure of blood in the capillary OPB = oncotic pressure of blood in the capillary HPT = hydrostatic pressure of tissues (in the interstitial fluid) OPT = oncotic pressure of tissues (in the interstitial fluid) Small arrows show the direction of action of a pressure. Big arrows show the direction of fluid flows.

Notice that filtration rate is 20 l/day and reabsorption rate is 18 l/day, and 2 l of fluids per day gets into lymphatic vessels.

Effective filtration pressure = (HPB + OPT) - (HPT + OPB) = (35 mm Hg + 2 mm Hg) - (1 mm Hg + 24 mm Hg) = 12 mm Hg

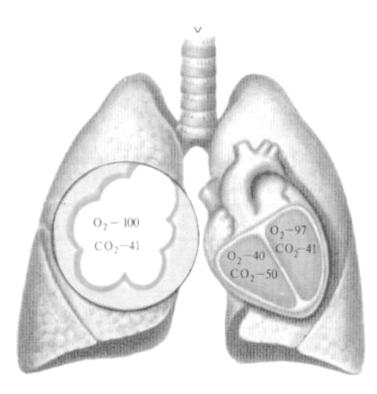

Effective reabsorption pressure = (HPB + OPT) - (HPT + OPB) = (15 mm Hg + 2 mm Hg) - (1 mm Hg + 24 mm Hg) = -8 mm Hg

Table 2.6. — Regulation of vascular tonus

Nervous mechanism			Humoral mechanism	
Afferent part	Central part	Efferent part	Vasoconstrictors	Vasodilatators
<u>Angioreceptors</u> (situated in the walls of vessels): 1) baroreceptors (they respond to the distention of walls of vessels); 2) chemoreceptors (they are sensitive to O ₂ , CO ₂ , H ⁺ presence in blood).	Vasomotor center (it includes vari- ous levels of CNS): 1) thoracic and lumbal segments of spinal chord (vaso- constrictor centers); 2) the vasomotor center of medulla (this is the main cen- ter of regulation of vascular tonus and arterial pressure); 3) the pressor and depressor zones in hypothalamus; 4) the cortex of cerebrum (its par- ticipation in regu- lation of vascular tonus is proved by method of condi- tioned reflexes).	1) <u>Sympathetic</u> <u>nerve fibers</u> produce vasoconstriction (but dilate vessels of heart and skeletal muscles). 2) <u>Parasympathetic</u> <u>nerves</u> produce vaso- dilatation (but con- strict the vessels in heart).	 <u>The hormones</u> <u>suprarenal glands</u>: Adrenalin (it is mainly vasoconstrictor, but it dilates vessels of skeletal muscles, unstriped muscles of bronchis); Noradrenalin (it produces vasoconstriction); Aldosteron (it changes sensitivity of walls of vessels to action of adrenalin and noradrenalin). <u>2) Vasopressin</u> (the hormone of neurohypophysis; it is mainly vasoconstrictor, but it dilates cerebral and cardiac vessels) <u>3) Renin</u> (it is produced by uxtaglomerular apparatus of kidneys; it helps in production of Angiotensin II — vasoconstrictor). 	Biologically- active sub- stances and lo- cal hormones: •Histamin •Bradykinin

Unite 3

PHYSIOLOGY OF RESPIRATORY SYSTEM

Respiration — set of the processes providing receipt of O_2 by the organism, its delivery and consumption by tissues and excretion of the respiration end-product CO_2 into environment.

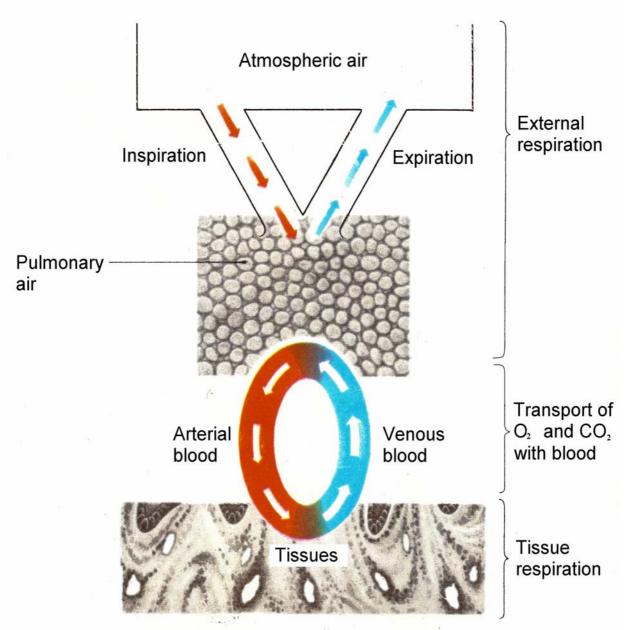


Figure 3.1 — Process of gas exchange between the environment and the organism (by Korobkov A. V., Chesnokova S. A., 1986)

Adaptive features of lungs which help to perform the function of gas exchange

1. The presence of air and blood channels. They are separated by the thinnest (0,004 mm) membrane through which diffusion of gases occurs.

2. The respiratory area of lungs is $50-90 \text{ m}^2$.

3. The presence of special – small – circle of blood circulation.

4. The presence of elastic tissue in lungs which ensure expanding and falling of lungs at inspiration and expiration.

5. The presence of supporting cartilage tissues (as cartilage of bronchi) in respiratory ways (cartilage tissues prevent falling of respiratory ways and promote fast and easy passage of air).

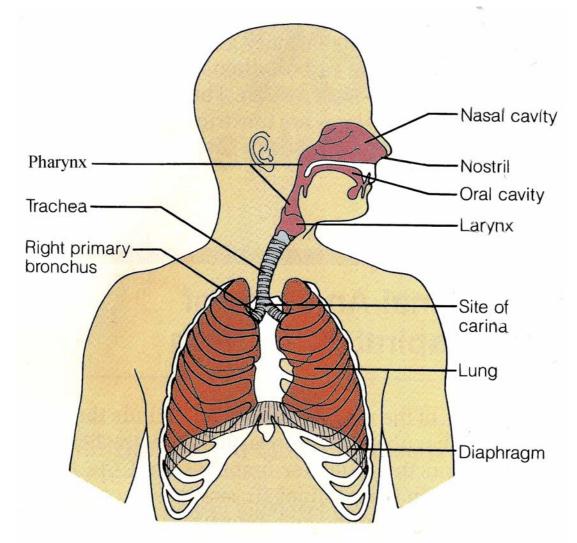


Figure 3.2. — Organs of the respiratory system (by Elaine N. Marieb, 1989)

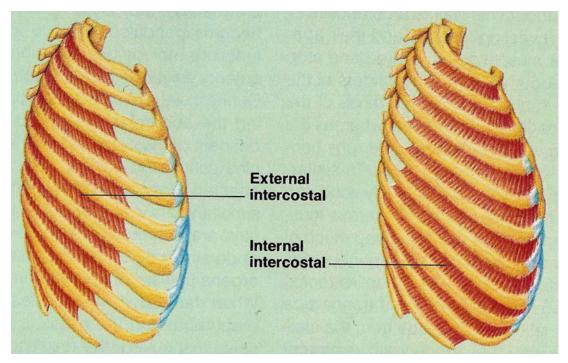
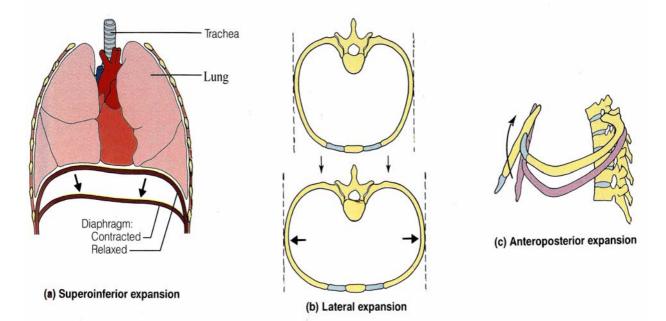



Figure 3.3. — Intercostal muscles (by Elaine N. Marieb, 1989)

Table 3.1. — Respiratory movements

Phase of respiratory cycle	The mechanism of changing of thorax volume	Describing of the mechanism
Inspiration	Raising of ribs	Contraction of main inspiration muscles:
1	e	• external intercostal muscles;
		• internal intercartilaginous muscles.
		Contraction of auxiliary inspiration muscles (at
		forced respiration):
		• greater and smaller pectoral muscles;
		• scalene muscle;
		• sternocleidomastoid muscle; trapezius muscle, etc.
	Movement of diaphragm	At inspiration diaphragm flattens (moves down)
		as result of contraction of its muscular fibers.
Expiration	Decreasing of thorax volume	Decreasing of thorax volume due to:
	due to factors which are not	• weight of thorax;
	connected with contraction of	 elasticity of costal cartilages;
	muscles	 elasticity of lungs;
		• the pressure of organs of abdominal cavity
		on the diaphragm.
	Movement of diaphragm	Diaphragm relaxes and adjoins the internal wall
		of thorax.
	At forced respiration decreas-	Contraction of main expiration muscles:
	ing of thorax volume due to	 internal intercostal muscles.
	contraction of some muscles	Contraction of auxiliary expiration muscles:
		• backbone flexors;
		• abdominal muscles.

Figure 3.4. — Changes in thoracic volume during breathing (by Elaine N. Marieb, 1989)

(a-c) Ways in which the volume of the thorax is increased during inspiration. The diaphragm descends as it contracts, increasing the superiorinferior dimension (a). Due to the contraction of the external intercostal muscles the ribs are elevated, the thorax expands laterally (b) and in the anteriorposterior plane (c).

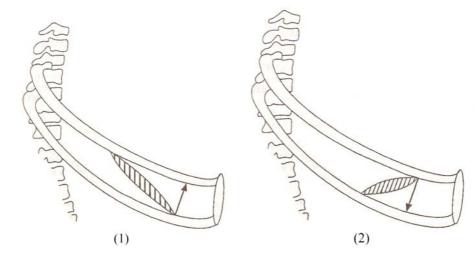
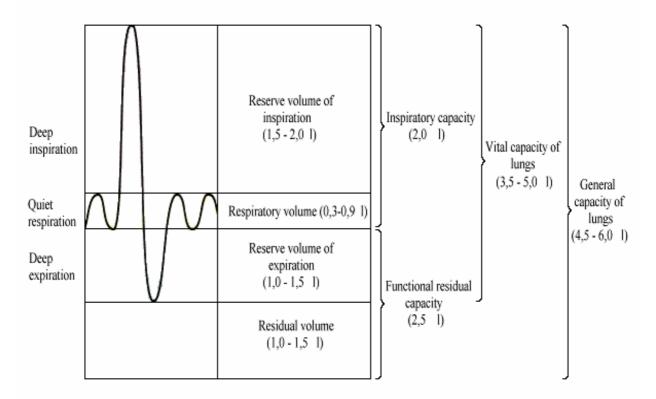



Figure 3.5 — Mechanism of rising or lowering the ribs due to contraction of intercostal muscles

(1) — at contraction of external intercostal muscles ribs rise;

(2) — at contraction of internal intercostal muscles ribs lower;

Scheme 3.1. — Spirographic record. Pulmonary volumes and capacities

Table 3.2. — There are 4 respiratory volumes and 4 capacities of lungs

Volumes	Capacities
Respiratory volume	Inspiratory capacity
Reserve volume of inspiration	Vital capacity
Reserve volume of expiration	General capacity of lung
Residual volume	Functional residual capacity

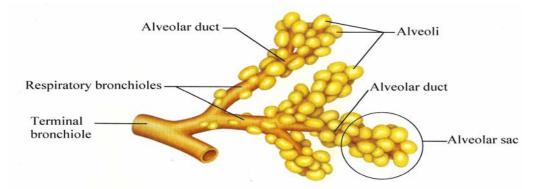


Figure 3.6. — Diagrammatic view of the respiratory structures

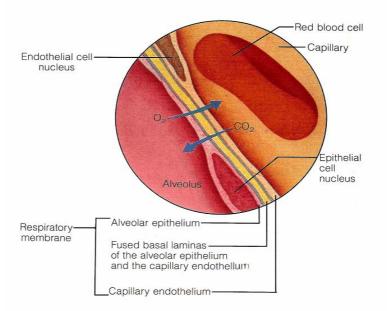
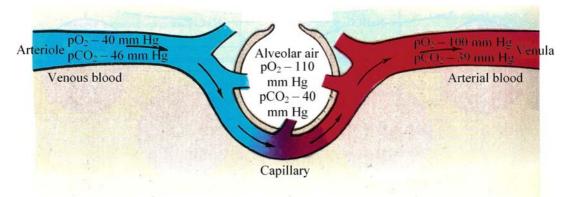
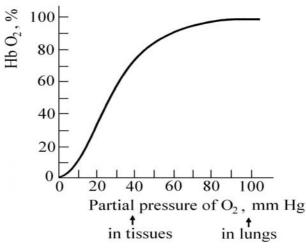
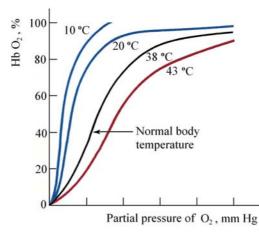
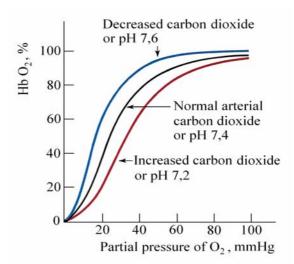


Figure 3.7. — Anatomy of the respiratory membrane (by Elaine N. Marieb, 1989)

Table 3.3. — Structure of air (in %)

Air	02	CO ₂
Inhaled	21.0	0.02-0.03
Exhaled	16.0	4.5
Alveolar	14.0	5.5


Figure 3.8. — Gas exchange between the alveolus and capillary (by Korobkov A. V., Chesnokova S. A., 1986)

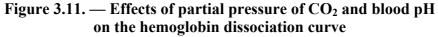


Figure 3.9. — **Oxyhemoglobin dissociation curve** Percent of HbO₂ is shown at different oxygen partial pressures

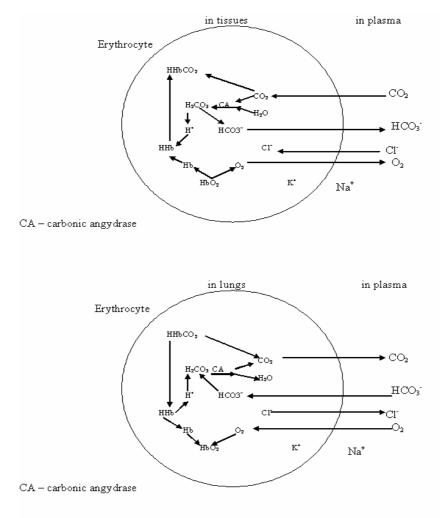


Figure 3.10. — **Effects of temperature on the hemoglobin dissociation curve** Oxygen unloading is accelerated at conditions of increased temperature, resulting in a shift to the right of the dissociation curve

Oxygen unloading is accelerated at conditions of increased partial pressure of CO₂ and decreased pH, resulting in a shift to the right of the dissociation curve.

Scheme 3.2. — Transport of CO₂

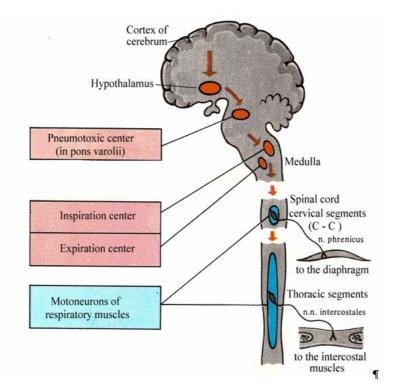


Figure 3.12. — Respiratory center (its components) and efferent nerves (by Korobkov A. V., Chesnokova S. A., 1986)

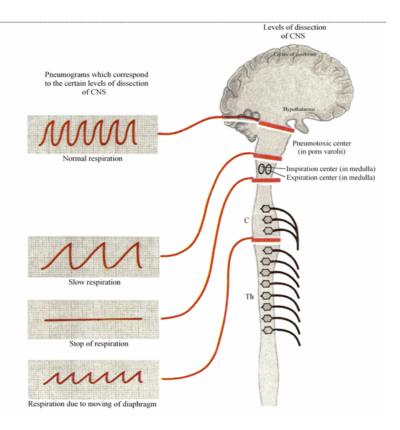


Figure 3.13. — Influence of dissection of different levels of central nervous system on respiration (by Korobkov A. V., Chesnokova S. A., 1986)



Figure 3.14. — Neural and chemical influences on the respiratory centers in medulla (by Elaine N. Marieb, 1989)

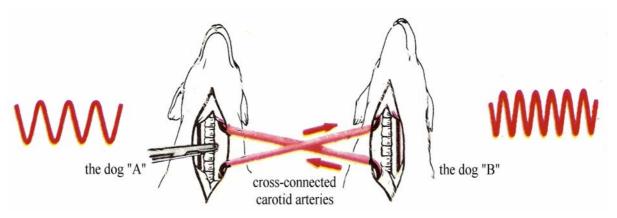


Figure 3.15. — The Frederico test with cross-circulation (by Korobkov A. V., Chesnokova S. A., 1986)

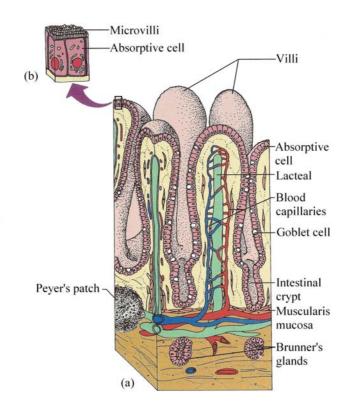

Pinching of the trachea of the dog «A» courses hyperphoea in the dog «B»; hyperphoea of the dog «B» courses decreasing of ventilation rate in the dog «A».

Table 3.4. — Critical zones of hypoxia (at respiration at the lowered atmospheric pressure)

Name of a zone	Altitude	Changes in the functioning of the organism
Neutral zone	up to 2000 m	Physiological functions practically do not suffer
Zone of complete compensation	2000–4000 m	 Ventilation of lungs increases (due to stimulation of carotid and aortal chemoreceptors). Heart rate increases. Systolic and minute volume of blood increase. Blood pressure increases. Physical and mental work capacity is reduced a bit.
Zone of incomplete compensation (zone of danger)	4000–7000 m	 Signs of mountain disease are developed: apathy or euphoria, short-breathing, tachycardia, giddiness, vomiting, headache. Muscular twitching appears. Blood pressure decreases. Work capacity is reduced, ability to decision-making and reactions is affected. Consciousness is fogged.
Critical zone	>7000 m	 pO₂ in alveolar air becomes lower than critical threshold (30–35 mm Hg) Cramps, loss of consciousness, breathlessness and disturbance blood circulation dangerous for life can happen. If such state lasts for a long period of time, affection of central nervous system and death happen.

Unite 4

PHYSIOLOGY OF DIGESTIVE SYSTEM

Digestion is the physical and chemical processing of food.

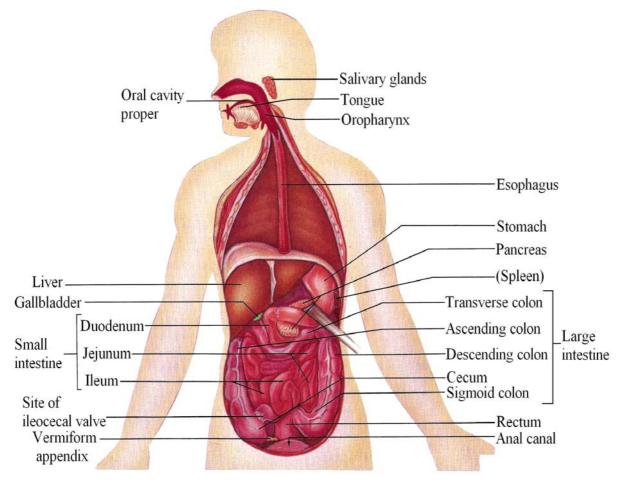


Figure 4.1. — Organs of the alimentary canal and related accessory digestive organs (by Elaine N. Marieb, 1989)

Name of a theory	The factor which causes the appearance of hunger or satiation		
Local theory of hunger	Hunger appears due to signals from the stomach which is not filled with		
	food (in such empty stomach periodical contractions of its walls happen).		
Glucostatic theory	Hunger appears due to the decreasing of glucose concentration in blood.		
Aminoacidostatic theory	Hunger appears due to the decreasing of the amino acids concentration in blood.		
Lipostatic theory	Hunger appears due to mobilization of fats from fat depot.		
Liponeurostatic theory	Hunger appears due to stimulation of food center by the signals from fat de-		
	pot during the mobilization of fat.		
Thermostatic theory	Satiation appears due to suppression of food center because of rising of		
	blood temperature during eating.		
Hydrostatic theory	Decrease of water resources of the organism reduces consumption of food.		
Metabolic theory	This theory unites all mentioned theories. The amount of intermediary prod-		
	ucts of Krebs's cycle in blood influence on the food center.		

Kinds of satiation

1) Sensory (initial) satiation — it appears before the absorption of digestion products (nutrients) into blood and has the complex reflex nature.

2) Metabolic (secondary) satiation — it appears due to absorption of digestion products (nutrients) into blood.

Table 4.2. — Structure of saliva (pH 7.4–8.0)

O	Inorganic components		
Digestive enzymes Other organic substances			Na^+ K^+
Name of the enzyme Role of the enzyme		Mucin	Ca^{2+} Mg ²⁺
Alpha-amylase	It splits carbohydrates (polysac- charides — starches, glycogen) with formation of dextrines, di- saccharides (maltose) and par- tially glucose)	Lysozyme Callecrein Proteins Amino acids Creatinine	Mg ²⁺ Chlorides, Carbonates Phosphates (and others)
Proteinases (cathepsines, salivain, glandu- lain),lipase, alkaline and acidic phos- phatases	The activity of this enzymes in saliva is insignificant		

Saliva also contains water

Functions of saliva:

- 1. Moistens and dilutes food;
- 2. Promotes gustatory approbation of food;
- 3. Enzymes of saliva provide hydrolysis of carbohydrates;
- 4. Protects mucous membrane;
- 5. Due to mucin food lump is formed;
- 6. The lysozyme carries out bacteriostatic action (factor of nonspecific protection);
- 7. The saliva partially neutralizes acidic products getting into oral cavity;
- 8. Contact of proteins with saliva provides their best digestion;
- 9. The saliva contains biologically active substances callecrein, parotin.

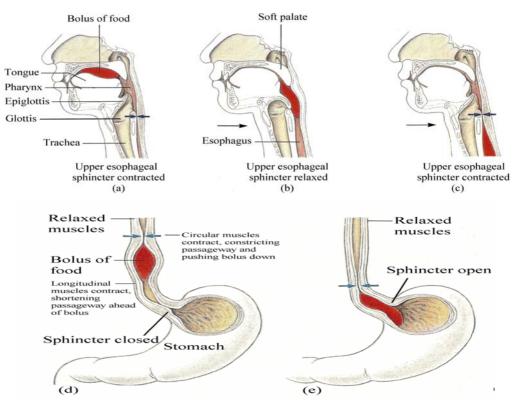


Figure 4.2. — Deglutition (swallowing) (by Elaine N. Marieb, 1989)

The process of swallowing consists of voluntary (buccal) and involuntary (pharyngeal- esophageal) phases. (a) During the buccal phase, the tongue rises and presses against the hard palate; in so doing, it forces the food bolus into the oropharynx. Once food enters the pharynx, the involuntary phase of swallowing begins. (b) Food passage into respiratory passageways is prevented by the rising of the uvula and larynx and relaxation of the upper esophageal sphincter to allow food entry the esophagus. (c) The constrictor muscles of the pharynx contract, forcing food into the esophagus inferiorly, and the upper esophageal sphincter contracts once food entry has occurred. (d) Food is conducted along the length of the esophagus to the stomach by peristaltic waves. (e) The gastroesophageal sphincter opens, and food enters the stomach.

Not digestive functions	Digestive functions
 Participation in regulation of erythrogenesis (due to Castle's intrinsic factor). Participation in metabolism. Excretory function. Endocrine function (due to presence of endo- crine cells which form hormones and hormone-like products of digestive system). Protective function (due to antibacterial func- tion of HCl). 	 Deposition of food. Mixing of food. Chemical (enzymatic) processing of food. Portion evacuation of partially digested food into duodenum. Adsorption of some products of digestion.

Table 4.3. — Functions of stomach

Table 4.4. — Structure of gastric juice (pH 1.5–1.8)

	Inorganic components		
Digestiv	ve enzymes	Other organic substances	Hydrochloric acid
Name of the enzyme <u>Pepsin and gastricsin</u> (they are secreted in inac- tive form — pepsinogens — and act in the presence of HCl)	Role of the enzyme They split proteins with the formation of large polypep- tides	Mucoids Castle's intrinsic factor Urea Urinary acid Lactic acid Amino acids Polypep- tides	Na ⁺ K ⁺ Ca ²⁺ Mg ²⁺ Chlorides Sulphates, Bicarbonates (and others)
<u>Chymosin</u>	It coagulates proteins of milk		
Gelatinize	It splits gelatin It splits fats (especially emul- sificated fat of milk at breast feeding of a child), The activity of this enzyme in	-	
Lipase	gastric juice is insignificant.		

Gastric juice also contains water

Functions of HCl:

- 1. Activation of pepsinogen into pepsin.
- 2. Denaturation of proteins (eases the hydrolysis of proteins)
- 3. Antibacterial function.
- 4. Decalcification of bones.
- 5. Regulation of gastric motor activity.

6. Stimulation of formation of hormones (HCl comes into duodenum, and stimulates the production of such duodenal hormones as secretin and pancreozymin).

7. Regulation of evacuation of chymus (performing of obturator pyloric reflex: when the chymus from stomach comes into duodenum, pH in duodenum becomes more acid due to HCl of gastric juice, pyloric sphincter contracts and stops evacuation of chymus from the stomach; after the neutralizing of acid by the hydrocarbonates of duodenal juice pH in duodenum rises and pyloric sphincter opens).

Phase of stomachal secretion	Mechanism of stimulation of secretion	Example of an experi- ment which proves the presence of the phase	Physiological role of the phase	Reflex arch
«cerebral» phase	conditioned reflexes	View and smell of food leads to the secretion of gastric juice, which can be received in dogs with fistula of stomach	Stomach is pre- pared to recep- tion of food	 visual, auditory, ol- factory receptors; cortex of cerebrum; hypothalamus; nuclei of vagus nerve in medulla; stomach glands
	unconditi-oned reflexes	The so-called «imaginary» feeding of esophagotomy dogs with fistula of stomach (in such dog food does not get into the stomach, but, in 5–10 min after be- ginning of feeding secre- tion of gastric juice begins)	Stomach is pre- pared to recep- tion of food	 receptors of oral cavity, esophagus; nuclei of vagus nerve in medulla; stomach glands
stomachal phase	unconditi-oned reflexes	Introduction of food or some solutions into stom- ach through fistula, or ir- ritation of mechanorecep- tors of stomach produce secretion of gastric juice.	Correction of the amount and structure of gas- tric juice ac- cording to the properties taken food	 chemoreceptors and mechanoreceptors of mu- cous membrane of the stomach; nuclei of vagus nerve in medulla; stomach glands. Regulation of secre- tion of stomach glands is made by nerve and hu- moral (gastrin) mechanisms
intestinal phase	uncondi- tioned re- flexes	Introduction of some kinds of food (meat bouillon, cabbage juice, hydrolysates of proteins) into small intestine pro- duces secretion of gastric juice.	Correction of the amount and structure of gas- tric juice accord- ing to the prop- erties of par- tially digested food which came into the in- testine	 chemoreceptors and mechanoreceptors of mu- cous membrane of intestine; nuclei of vagus nerve in medulla; stomach glands. Regulation of secretion of stomach glands is made by nerve and hu- moral (secretin and cholecystokinin — pan- creozymin) mechanisms

Table 4.5. — Neural and hormonal mechanisms that regulate the release of gastric juice

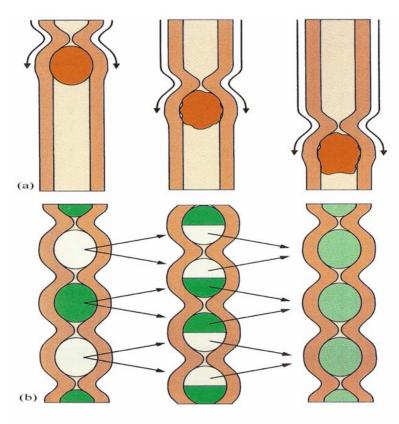


Figure 4.3. — Peristalsis and segmentation (by Elaine N. Marieb, 1989)

(a) In peristalsis adjacent segments of the intestine (or other alimentary tract organs) alternately contract and relax, which results in the movement of food along the tract distally.

(b) In segmentation, nonadjacent segments of the intestine alternately contract and relax. Because the active segments are separated by inactive regions, the food is moved forward and than backward; this results in mixing of the food rather than food propulsion.

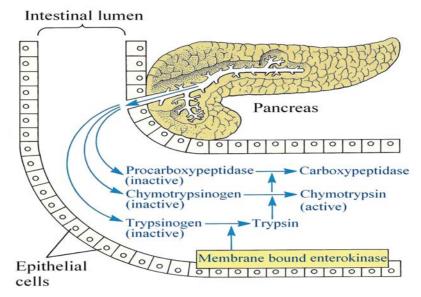


Figure 4.4. — Activation of pancreatic proteases in the small intestine (by Elaine N. Marieb, 1989)

Pancreatic proteases are secreted in an inactive form and are activated in duodenum. Enterokinase, membrane — bound (brush border) intestinal enzyme activates trypsinogen to the active trypsin form. Trypsin, itself a proteolytic enzyme, than activates procarboxypeptidase and chymotrypsinogen.

Organic con	Inorganic components	
Digestive enzymes		Bicarbonates (cause the
Name of enzyme	Role of enzyme	alkalinity of juice) Chlorides
$\underline{\text{Trypsin}}$ (synthesized in an inactive form — trypsinogen, which turns into trypsin in the duodenum under action of its enzyme enterokinase; Ca^{2+} ac- celerate the process) $\underline{\text{Chymotrypsin}}$ (synthesized in inac- 	They split proteins and large polypeptides with the formation of small peptides and aminoacids	Na ⁺ K ⁺
<u>Carboxypeptidases A and B.</u> (synthe- sized in inactive form — procar- boxypeptidases A and B, which are activated by trypsin)	They act on C — end connec- tions of proteins and peptides	
<u>Lipase</u> <u>Phospholipase (synthesized in inac- tive form — prophospholipase, which is activated by trypsin) <u>Esterase</u></u>	They split fats (emulsified by ac- tion of salts of cholic acids) with the formation of monoglycerides and fatty acids	
Alpha-amylase	It splits carbohydrates: (polysac- charides) with the formation of	

Table 4.6. — Structure of pancreatic juice (pH 7.8–8.4)

Pancreatic juice also contains water

Ribonuclease and

deoxyribonuclease

Table 4.7. — Structure and functions of bile (pH 7.3–8.0)

Organic components of bile	Inorganic	Functions of bile
	components	
	of bile	
<u>Cholic acids</u> — cholic and chenode-	Na ⁺	1. Emulsification of fats, which promote their
oxycholic acids — and their salts	K^+	hydrolysis.
(in the bile they are contained as	Ca ²⁺	2. Strengthens action of lipolytic and amy-
compounds with glycocol and	Mg ²⁺ chlorides	lolytic enzymes.
taurine; glycocholic acids - 80%	bicarbon-	3. Strengthens motility of intestine.
and taurocholic acids -20%)	atesphosphates	4. Participates in neutralization of acidic prod-
Cholic pigments (bilirubin and	(and others)	ucts which have come from the stomach.
biliverdin)		5. Promotes adsorption of fatty acids, lipo-
Cholesterin		soluble vitamins, cholesterin, amino acids and
Fatty acids		salts of calcium.
Mucin		6. Inhibits decay process in the intestine.
Proteins and amino acids		7. Protective function (bile has bacteriostatic
		action).
		8. Stimulates biligenesis

oligosaccharides, disaccharides,

They split nucleic acids with the formation of nucleotides

monosaccharides

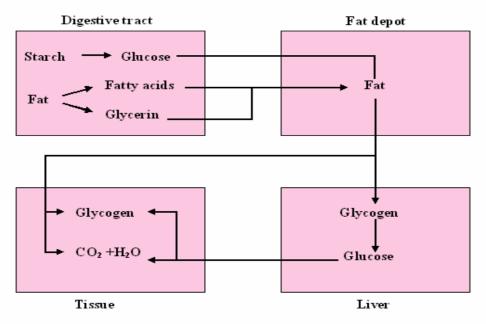
	Inorganic components		
Digestiv	ve enzymes	Other organic substances	Na ⁺ K ⁺
Name of enzyme	Role of enzyme	Mucus	Ca ²⁺
Protein-digesting enzymes: enterokinase, peptidases (dipep- tidase, aminopeptidase)	They split small peptides, dipep- tides with the formation of mainly aminoacids	Proteins Amino acids Urea Non-destructed	Chlorides Bicar- bonates Phos- phates
Carbohydrate-digesting enzymes: amylase, lactase, saccharase	They split dextrins and oligo- saccharides with the formation of mainly monosaccharides	epithelial cells and fragments of cells	
Fat-digersting enzymes: lipase, phospholipase	They split fats with the forma- tion of monoglycerides and fatty acids		
Alkaline phosphatase	It splits residue of phosphoric acid from the organic ether com- pounds of phosphoric acid		
Nuclease	It splits nucleotides with the formation of N-containing bases, ribose, deoxyribose, phosphate		

Table 4.8. — Structure of juice of small intestine (pH 5.05–7.07)

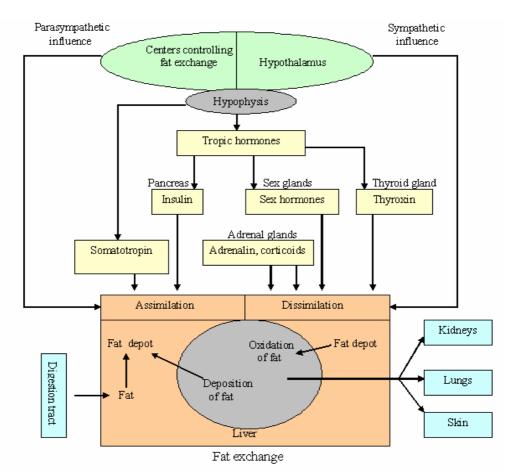
Juice of small intestine also contains water

Table 4.9. –	- Hormones an	d hormone-like	products that	act in digestion
--------------	---------------	----------------	---------------	------------------

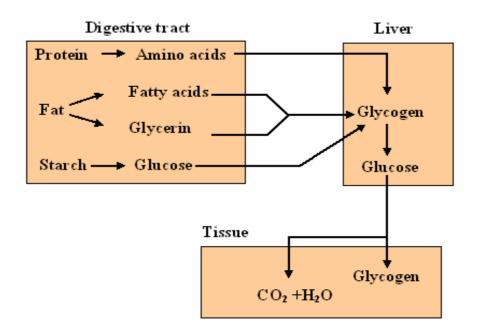
Hormone	Site of production	Target	Effect
Gastrin	Stomach mucosa	Stomach Ileocecal valve	Causes gastric glands to increase secretory activity; most pronounced effect is on HCl secretion. Relaxes ileocecal valve
Serotonin	Stomach mucosa	Stomach	Causes contraction of stomach muscle
Histamine	Stomach mucosa	Stomach	Activates parietal cells to release HCl
Somatostatin	Stomach mucosa	Stomach Pancreas Small intestine	Inhibits gastric secretion of all products; inhibits gastric motility and emptying. In- hibits secretion of pancreas. Inhibits intes- tinal absorption.
Intestinal gastrin	Duodenal mucosa	Stomach	Stimulates gastric glands
Secretin	Duodenal mucosa	Stomach Pancreas Liver	Inhibits gastric gland secretion during gas- tric phase of secretion. Increases output of pancreatic juice rich in bicarbonate ions. Increases bile output.
Cholecystokinin	Duodenal mucosa	Stomac Pancreas Gallbladder Sphincter of Oddi	Inhibits gastric gland secretion during gastric phase of secretory activity. Increases output of enzyme-rich pancreatic juice. Stimulates organ to contract and expel stored bile. Re- laxes Oddi's sphincter to allow entry of bile and pancreatic juice into duodenum.
Gastric inhibitory peptide	Duodenal mucosa	Stomach	Inhibits gastric gland secretion during gas- tric phase.
Enterogastrone	Duodenal mucosa	Stomach	Inhibits motility of stomach smooth muscle.

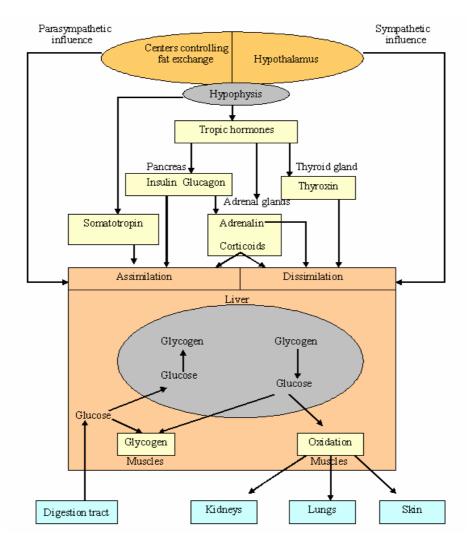

Table 4.10. — Humoral regulation of activity of gastrointestinal tract

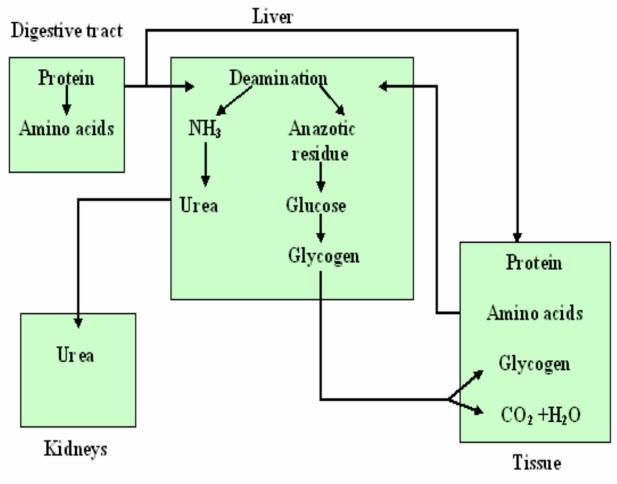
The kind of activity	Stimulators	Inhibitors
Secretion of saliva	Acetylcholine, histamine, callecrein, toxins, CO ₂ , parotin	Noradrenalin, adrenalin
Secretion of gastric juice	Gastrin, acetylcholine, bombesin, motilin	Noradrenalin, adrenalin, de- creasing of pH, secretin, chole- cystokinin, gastric inhibitory peptide, somatostatin, serotonin
Motor activity of stomach	Gastrin, motilin, serotonin, insulin, acetylcholine	Secretin, cholecystokinin, gas- tric inhibitory peptide, noradrena- lin, adrenalin, enterogastrone
Secretion of the juice of small intestine	Products of digestion of proteins, fats, pancreatic juice, HCl, gastric inhibitory peptide, motilin	Somatostatin
Motor activity of small intes- tine	Vegetable food, fats, vasopressin, oxi- tocin, bradikinin, serotonin, histamine, gastrin, motilin, cholecystokinin	Secretin, gastric inhibitory peptide
Secretion of pancreatic juice	Acetylcholine, HCl, secretin, chole- cystokinin, gastrin, serotonin, insu- lin, salts of bile acids	Adrenalin, noradrenalin, glu- cagons, calcitonin, gastric in- hibitory peptide, somatostatin
Excretion of pancreatic juice	Cholecystokinin	Carboxypeptidases A and B
Secretion of bile	Bile, Serotonin, glucagon, gastrin, cholecystokinin, prostaglandins	_
Excretion of bile	Eggs, meat, fats, cholecystokinin, gastrin, secretin, bombesin	Glucagon, calcitonin, gastric inhibitory peptide
Motor activity of large intestine	Rude food, vegetable food	Serotonin, adrenalin, glucagon


Unite 5

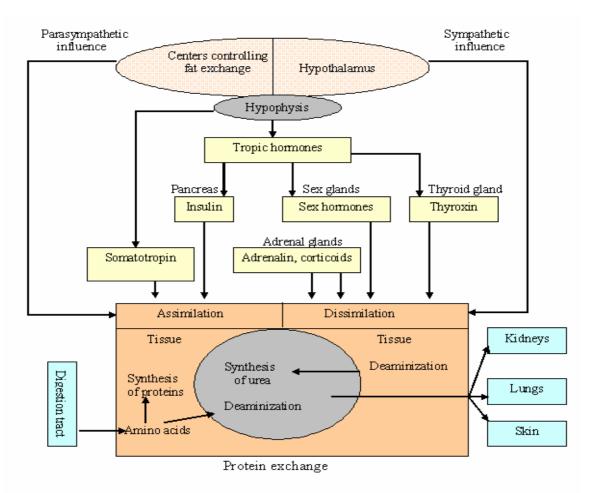
METABOLISM. ENERGY METABOLISM. THERMOREGULATION


Metabolism — it includes all physical, chemical and physiological processes, which provide reception and delivery of energy to cells, organs and tissues from exo- and endogenous sources, ensuring of plastic needs of the organism for regenerating of structures and excretion of metabolism products from the organism.


Scheme 5.1. — Fat exchange (by A. Ginetsinskiy, 1956)

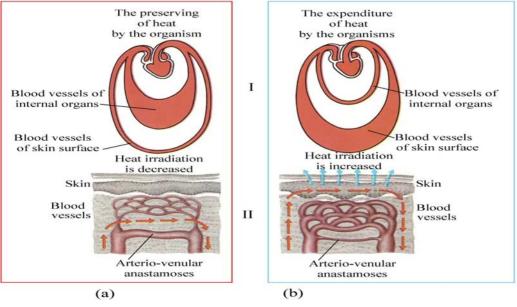

Scheme 5.2. — Regulation of fat exchange (by Korobkov A. V., Chesnokova S. A., 1986)

Scheme 5.3. — Carbohydrate exchange (by A. Ginetsinskiy, 1956)


Scheme 5.4. — Regulation of carbohydrate exchange (by Korobkov A. V., Chesnokova S. A., 1986)

Scheme 5.5. — Protein exchange (by A. Ginetsinskiy, 1956)

Kind of balance	Characteristics	Example
Nitrogen equilibrium	The amount of nitrogen consumpted with food is equal to the amount of nitrogen excreted from the or- ganism (the amount of synthesized protein is equal to the amount of destructed protein)	It is observed in adults
Positive ni- trogen bal- ance	The amount of nitrogen consumpted with food is more than the amount of nitrogen excreted from the organism (synthesis of protein predominates over de- struction of protein)	It is observed: • in children at growth, • during recovery, • at pregnancy, at increased sports activity.
Negative ni- trogen bal- ance	If the amount of nitrogen excreted from the organism is more than the amount of nitrogen consumpted with food (destruction of protein predominates over syn- thesis of protein)	It is observed: • at protein starvation, • in old people, • during serious diseases.


Table 5.1. — Nitrogen balance

Scheme 5.6. — Regulation of protein exchange (by Korobkov A. V., Chesnokova S. A., 1986)

Table 5.2. — Methods of definition of energy consumption of organism

Name of	f method	Devices used	Principle
		for measuring	of method
Direct calorimetry		Special chambers — biocalorimeters (which are thermoisolated from the environment).	It is based on direct and complete calculating of amount of heat released by the organism. Temperatures of water coming into the chamber and flowing from it are measured and the differ- ence between these temperatures is calculated.
Indirect calorimetry	Complete gas analysis	At the open respiratory method of Douglas — Choldane airproof sack is used.	It is based on the definition of the amount of oxygen inspired and carbonic gas expired during certain interval of time. The expired air is collected into airproof sack with following definition of its total amount and amount of oxygen and carbonic gas in it by means of gas analyzers. Then calculation of heat production is made.
Incomple gas analys			It is based on the definition of only the amount of oxygen inspired with following calculation of heat production. This method is used for definition of energy consumption when person is in conditions of relative rest.

Scheme 5.7. — The mechanisms of heat irradiation by the organism at the conditions of cold (a) and heat (b) ((by Sherington, 1897)

I — redistribution of blood between the vessels of internal organs and vessels of skin surface. II — redistribution of blood in the vessels of skin.

Table 5.3. — Mechanisms of thermoregulation

Kinds of thermoregulation	Name of the mechanism	Characteristics of the mechanism
	Shivering thermogenesis	Irregular involuntary tonic contractions of muscles.
Chemical	Not shivering thermogenesis	• The increasing of metabolic processes in in- ternal organs;
thermoregulation (heat production)		• The increasing of metabolic processes in brown adipose tissue;
		• The increasing of thermogenesis after taking food (at disintegration of proteins, fats and carbohydrates).
	Thermal irradiation	It happens in the form of electromagnetic waves
	Convection	If the skin is warmer than surrounding air, the air layer adjacent to the skin is heated up, rises and displaced by colder air.
Physical thermoregulation	Heat conductivity	It is transition of heat from one subject to another at immediate contact with a body surface. Biological tissues serve as isolators (for exam- ple, fats).
(heat irradiation)	Evaporation	Evaporation of water (sweat) from surface of skin happens with the use of energy for transi- tion of fluid into steam.
	Changing of lumens of skin vessels	Dilatation of skin vessels increases heat irradia- tion, and constriction of skin vessels decreases heat irradiation.
	Changing of respiration rate	Expired air carries heat. When respiration be- comes frequent, heat irradiation increases.

Table 5.4. — Regulation of constancy of body temperature

Receptors	Spinal cord	Hypothalamus	Cortex of cerebrum
Thermoreceptors	In the spinal cord some	The centers of heat ir-	It is possible to form condi-
(«cold» and «termal»).	centers of thermoregu-	radiation are situated in	tioned reflex of rising of
They are situated in	latory reflexes are situ-	the region of anterior nu-	temperature.
skin, dermal and hy-	ated (it participates in	clei of hypothalamus;	Rising of body temperature can
podermic vessels, and	regulation of shiver-	the centers of heat pro-	happen under influence of hyp-
in CNS.	ing thermogenesis and	duction are situated in	nosis, at mental diseases, hys-
	in regulation of lu-	the lateral-dorsal region	teria, and also in actors and in
	men of skin vessels).	of hypothalamus.	students during examinations.

Table 5.5. — The hormones of endocrine glands

Endo- crine glands	Hormone	Target	Effects	Effects of hypose- cretion and hy- persecretion
Thyroid gland	Triiodothyronine and tetraiodothy- ronine (T3,T4)	All organism	Accelerates metabolism and con- sumption of oxygen by tissue	Hyposecretion: Cretinism (at child- hood) myxedema Hypersecretion: thyrotoxicosis
Parathyroid glands	Parathormone	Bone, kid- neys, diges- tive tract	Increases the level of calcium in blood. Simultaneously reduces concentration of inorganic phos- phates in blood, and increases their excretion with urine.	Hyposecretion: tetany Hypersecretion: osteoporosis
Beta-cells of pancreas	Insulin	All organism	Decreases the level glucose in the blood	Hyposecretion: diabetes mellitus Hypersecretion: hypoglycemic coma
Alpha-cells of pancreas	Glucagon	Liver	Promotes splitting of glycogen and increase the level of glu- cose in blood. Simultaneously, glucagon stimulates synthesis of glycogen in liver.	Hyposecretion: pathological syn- drome: dermatitis, anemia.
Cortex of adrenal gland	Mineralocorti- coids (aldosterone)	Kidneys	Increases the amount of Na^+ in blood (due to increasing of reab- sorption of Na^+ in kidneys) and decreased the amount of K^+ in blood; Sodium reabsorption is ac- companied with water reabsorp- tion, and due to this blood volume and blood pressure increases.	Hyposecretion: Addison's disease Hypersecretion: aldosteronism
	Glucocorticoids (cortisol)	All organism	Promote gluconeogenesis and hy- perglycemia; mobilize fats for en- ergy metabolism; stimulate protein catabolism; assist body to resist stress factors; depress inflamma- tory and immune responses.	Hyposecretion: Addison's disease Hypersecretion: Cushing's disease
	Gonadocorticoids (mainly andro- gens)		May be responsible for female libido and source of estrogen after menopause	Hypersecretion: virilization of fe- males

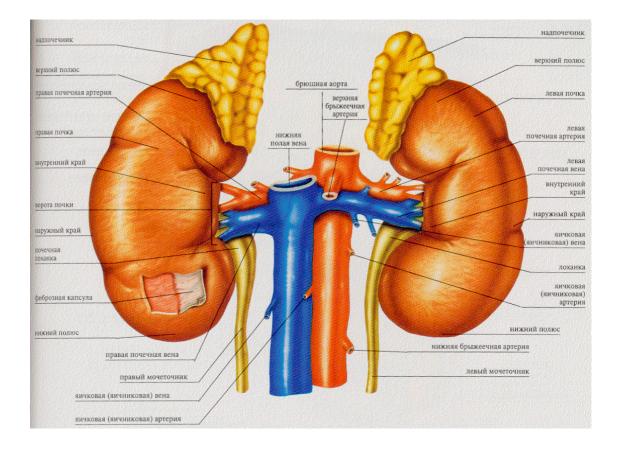
Endo- crine glands	Hormone	Target	Effects	Effects of hypose- cretion and hy- persecretion
Medullary	Adrenaline	Myocar	Increases heart rate and blood	Hypersecretion:
layer of		dium, smooth	pressure (due to vasoconstric-	hypertension
adrenal		muscles of	tion), stimulate lipolysis and	
gland		arterioles,	glycogenolysis	
		liver, skele-		
		tal muscles,		
		fatty tissue		
		Arterioles		
	Noradrenaline		Increase blood pressure by pro-	
			moting vasoconstriction	
Ovaries	Estrogens,	Female genital	Stimulate development of secon-	Hyposecretion:
	Progesterone	organs, mamma	dary sex characteristics; provide	hypogonadism
		gland, uterus,	cyclic process in uterus and ova-	
		all organism	ries, mamma glands	
Testes	Testosterone	Male genital	Stimulate development of sec-	Hyposecretion:
		organs, all	ondary sex characteristic and	hypogonadism
		organism	normal function	

Table 5.6. — Hormones of hypophysis

Hormone	Target	Effects	Effects of hyposecretion and hypersecretion				
	Hormones of anterior lobe of the hypophysis						
Growth hormone	Body cells, mainly bone and muscle	Stimulates somatic growth; mobilizes fats	Hyposecretion: pituitary dwarfism (pituitary nanism) in children. Hypersecretion: gigantism in children; acromegaly in adults.				
Thyroid–stimulating hormone	Thyroid gland	Stimulates thyroid gland to release thyroid hormone	Hyposecretion: cretinism in chil- dren, myxedema in adults. Hypersecretion: symptoms of Graves's disease (Basedow's disease).				
Adrenocorticotropic hormone	Adrenal cortex	Promotes release of glu- cocorticoids and androgens	Hyposecretion: Rare Hypersecretion: Cushing's disease.				
Follice-stimulating hormone	Ovaries and testes	In females: stimulates ovar- ian follicle maturation and estrogen production. In males: stimulates sperm production.	Hyposecretion: failure of sexual maturation Hypersecretion: no important ef- fects				
Luteinizing hormone	Ovaries and testes	In females: triggers ovula- tion and stimulates ovarian production of progesterone. In males: promotes tes- tosterone production	Hyposecretion: failure of sexual maturation Hypersecretion: no important ef- fects				
Prolactin	Breast secre- tory tissue	Promotes lactation	Hyposecretion: decrease of milk production in nursing women. Hypersecretion: galactorrea; ab- sence of menses in females; im- potency in males.				

Hormone	Target	Effects	Effects of hyposecretion and hypersecretion
	Hormones of i	ntermediate lobe of the hy	pophysis
Itermedin	Melancytes	Stimulates pigment pro- duction	Hyposecretion: albinism Hypersecretion: hyperpigmentation
	Pos	terior pituitary hormones	
Oxytocin	Uterus	Stimulates uterine con- tractions (especially at de- livery). Initiates milk ex- cretion from breast	Hyposecretion: powerless delivery
Antidiuretic hormone	Kidneys	Stimulates reabsorption of water in kidney	Hyposecretion: diabetes insipidus Hypersecretion: unknown

Table 5.7 — Vitamins


Vitamin	Sources	Physiological role	Prob	Problems		
vitaiiiii	Sources	r nysiologicai role	Excesses	Deficits		
A (retinol)	Formed from provi- tamin carotene in intestine, liver, kid- neys. Carotene is found in yellow and green leafy vege- tables; vitamin A is found in fish liver, oils, egg yolk, liver oils, fortified foods	Required for synthesis of photoreceptor pigments of rods and cones, integ- rity of skin and mucosae, normal tooth and bone development; normal re- productive capabilities; acts with vitamin E to stabilize cell membranes	Massive doses in- duce toxicity: nau- sea, vomiting, ano- rexia, headache, hair loss, bone and joint pain, bone fragility, enlargement of liver and spleen	Night blindness; epithelial changes: dry skin and hair, skin sores; increased respiratory, diges- tive, urogenital in- fections; drying of conjunctiva; cloud- ing of cornea		
D (antirachitic factor)	Vitamin D_3 is produced in skin by irradiation of 7-dehydrocholesterol by UV light; ac- tive form produced by chemical modi- fication of vitamin D_3 in liver, then in kidneys	Increases calcium blood levels by enhancing ab- sorption of calcium; mo- bilizes calcium from bones	Massive doses in- duce toxicity: vom- iting, diarrhea, weight loss, calcification of soft tissues, renal damage	Faulty minerali- zation of bones and teeth; rickets in children, os- teomalacia in adults; poor mus- cle tone, restless- ness, irritability		
E (antisterility factor)	Vegetable oils, mar- garine, whole grains, dark-green leafy vegetables	It is a antioxidant; may help to prevent oxidation of vitamins A and C in in- testine; in tissues, de- creases oxidation of un- saturated fatty acids, thus helps maintain integrity of cell membranes	Thrombophlebitis, hypertension; slow wound healing	Extremely rare, precise effects un- certain: possible hemolysis of RBCs, macrocytic anemia; fragile capillaries		
K (coagulation vitamin)	Mostly synthesized by coliform bac- teria in large intes- tine; food sources: green vegetables, cabbage, cauliflower, pork liver	Essential for formation of clotting proteins and some other proteins made by liver; as intermedi- ate in electron transport chain, participates in oxidative phosphoryla- tion in all body cells	None known, nit stored in appre- ciable amounts	Easy bruising and bleeding (prolonged clotting time)		

Vitamin	Sources	Physiological role		lems
			Excesses	Deficits
C (ascorbic acid)	Fruits and vege- tables	Acts in hydroxylation re- action in formation of nearly all connective tis- sues; in conversion of tryptophan to serotonin; in conversion of choles- terol to bile salts; helps to protect vitamins A and E dietary fats from oxida- tion; enhances iron ab- sorption and use; required for conversion of folacin to its active form	Result of megadoses; enhanced mobili- zation of bone minerals and blood coagulation; ex- acerbation of gout, kidney stone for- mation	Defective forma- tion of intercellu- lar cement; fleet- ing joint pains, poor tooth and bone growth; poor wound healing, in- creased susceptibil- ity to infection; ex- treme deficit causes scurvy
B ₁ (thiamin)	Lean meats, liver, eggs, whole grains, leafy green vege- tables, legumes	Part of coenzyme co- carboxylase, which acts in carbohydrate me- tabolism; required for transformation of pyru- vic acid to acetyl CoA, for synthesis of pentose sugars and acetylcho- line; for oxidation of alcohol	None known	Beriberi: decreased appetite; gastrointes- tinal disturbances; peripheral nerve changes indicated by weakness of legs, cramping of calf muscles, numbness of feet; heart enlar- ges, tachycardia
B ₂ (riboflavin)	Widely varying sources such as liver, yeast, egg white, whole grains, meat, poultry, fish, legumes, major source is milk	Present in body as co- enzymes FAD and FMN both of which act as hy- drogen acceptors in body; also is a component of amino acid oxidases	None known	Dermatitis; cracking of lips at corners; lips and tongue be- come purple-red and shiny; ocular prob- lems: light sensitiv- ity, blurred vision.
Niacin (nico- tin-amide)	Diets that provide adequate protein usually provide ade- quate niacin be- cause amino acid tryptophan is eas- ily converted to niacin; preformed niacin provided by poultry, meat, fish; less impor- tant sources: liver, yeast, peanuts, po- tatoes, leafy green vegetables	Constituent of NAD and NADP, coenzymes in- volved in glycolysis, oxi- dative phosphorylation, fat breakdown; inhibits cholesterol synthesis	Result of mega- dosses; hypergly- cemia; vasodila- tion leading to flushing of skin, tingling sensations; possible liver dam- age gout	Pellagra: listless- ness, headache, weight loss, loss of appetite; pro- gresses to soreness and redness of tongue and lips; nausea, vomiting, diarrhea; photosen- sitive dermatitis, neurogical symp- toms also occur:
B ₆ (pyridoxine)	Meat, poultry, fish; less important sources: potatoes, tomatoes, spinach	Active form is coenzyme pyridoxal phosphate which functions in several en- zyme systems involved in amino acid metabolism, also required for conver- sion of tryptophan, for glycolgenolysis, for for- mation of antibodies and hemoglobin	Depressed deep tendon reflexes, numbness, loss of sensation in ex- tremities	Infants: nervous irritability, con- vulsions, anemia, vomiting, weak- ness, abdominal pain; adults; seb- orrhea lesions around eyes and mouth

Vitamin	Sources		Problems	
		Physiological role	Excesses	Deficits
Pantothenic acid	Name derived from Greek panthos mean- ing every where; widely distributed in animal foods, whole grains, leg- umes; liver, yeast, egg yolk, meat es- pecially good sour- ces; some pro- duced by entetic bacteria	Functions in form of coenzyme A in reac- tions that remove or transfer acetyl group, e.g.; formation of acetyl CoA from pyruvic acid, oxidation and synthesis of fatty acids; also in- volved in synthesis of steroids and heme of hemoglobin	None known	Symptoms vague: loss of appetite, abdominal pain, mental depression, pains in arms and legs, muscle spasms, neuromuscular degeneration
Biotin	Liver, egg yolk, legumes, nuts; some synthesized by bacteria in gas- trointestinal tract	Function as coenzyme for a number of enzymes that catalyze carboxyla- tion, decarboxylation, deamination reactions; essential for reactions of Kreb ^s s cycle, for formation of purines and nonessential amino ac- ids, for use of amino acids, for use of amino acids for energy	None known	Scaly skin, mus- cular pains, pallor, anorexia, nausea, fatigue; elevated blood cholesterol levels
B ₁₂ (cyano- cobalamin)	Liver, meat, poultry fish, dairy foods except butter, eggs; not found in plant foods	oods ggs;		Pernicious ane- mia, signified by pallor, anorexia, dyspnea, weight loss, neurological disturbances
Folic acid (folacin)	Liver, deep-green vegetables, yeast, lean beef, eggs, veal, whole grains; synthesized by enteric bacteria	Basis of coenzymes that act in synthesis of me- thionine and certain other amino acids, choline, DNA; essential for for- mation of red blood cells	None known	Macrocytic or mega- loblastic anemia; gastrointestinal dis- turbances; diarrhea

Unite 6

PHYSIOLOGY OF EXCRETION

Excretion is important process of homeostasis, it provides purifying of organism from products of exchange which cannot be used further by an organism (CO_2 and H_2O , foreign, toxic substances and series of other substances).

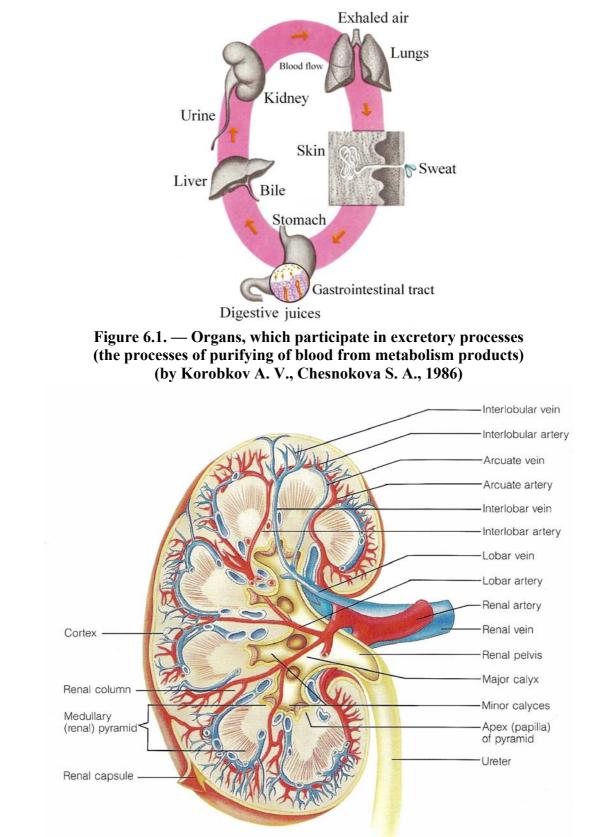


Figure 6.2. — Internal anatomy of the kidney (diagrammatic view of a coronally sectioned kidney, illustrating major blood vessels) (by Elaine N. Marieb, 1989)

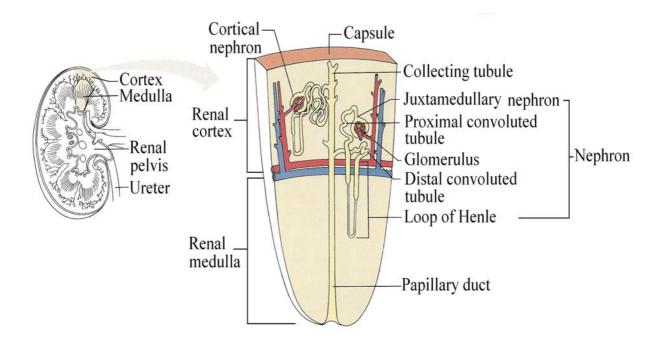


Figure 6.3. — Wedge-shaped section (lobule) of kidney tissue, indicating the locations of nephrons in the kidney (by Elaine N. Marieb, 1989)

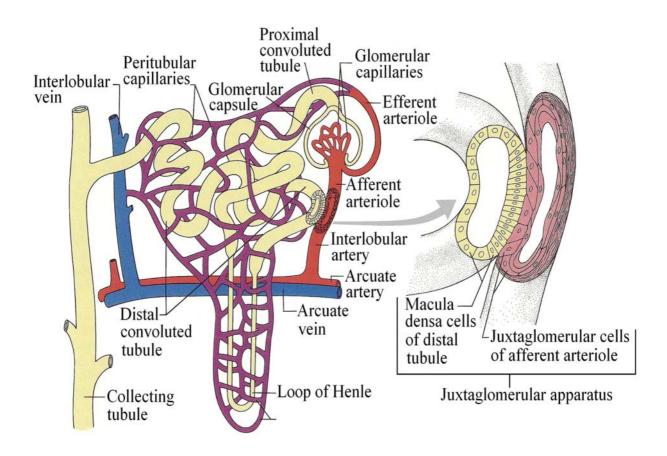


Figure 6.4. — Structure of a juxtamedullary nephron and its associated capillaries (by Elaine N. Marieb, 1989)



Figure 6.5. — The processes which take place in a nephron (by Elaine N. Marieb, 1989)

The thee major mechanisms by which the kidney adjust the composition of plasma are: (a) glomerular filtration, (b) tubular reabsorption, (c) tubular secretion.

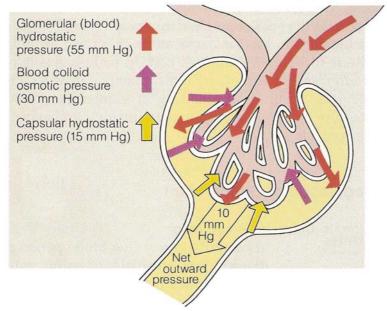


Figure 6.6. — Forces that determine glomerular filtration and the effective filtration pressure (by Elaine N. Marieb, 1989)

The glomerular hydrostatic (blood) pressure is the major factor forcing fluids and solutes out of the blood. This is opposed by the colloid osmotic pressure of the blood and the hydrostatic pressure that exists within the glomerular capsule. The pressure values cited in the diagram are approximate.

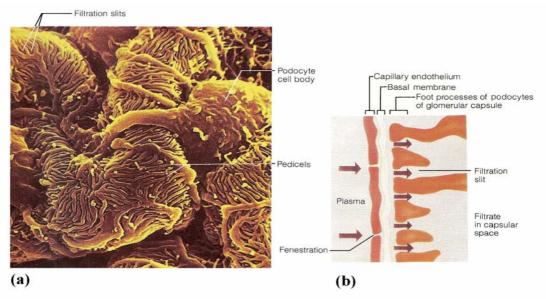


Figure 6.7. — The filtration membrane (by Elaine N. Marieb, 1989)

The filtration membrane in renal capsule consists of three layers:

1). the endothelium of glomerular capillary;

2). the basal membrane;

3). the layer of epithelial cells which cover Bowman's capsule (the cells of this layer are called podocytes).

(a) Scanning electron micrograph of the layer of podocytes. Filtration slits between the podocyte foot processes are evident (39,000 X)

(b) Diagrammatic view of a section taken through the filtration membrane showing all three structural elements

Effective filtration pressure (EFP).

Glomerular filtration depends on the effective filtration pressure (EFP). EFP = HPB - (OPB + HPF);

HPB — hydrostatic pressure of blood in capillaries of glomerulus (it is equal to 60–90 mm Hg); OPB — oncotic pressure of proteins of blood plasma (it is equal to 30 mm Hg); HPF — hydrostatic pressure of fluid in Bowman's capsule (it is equal to 20 mm Hg). EFP= 70 mm. Hg - (30 mm Hg + 20 mm Hg) = 20 mm Hg.

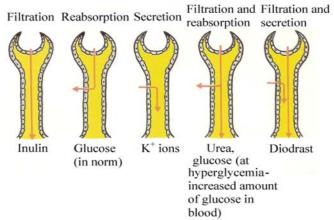
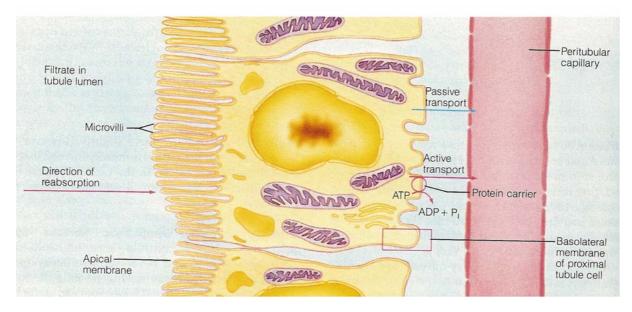



Figure 6.8. — Processes, which take place in the tubules of kidney, when different components of urine pass through the tubules (by Korobkov A. V., Chesnokova S. A., 1986)

Proximal convoluted tubule	Sodium ions (Na ⁺) Virtually all nutrients (glucose, amino acids, vitamins) Cations (K ⁺ , Mg ²⁺ , Ca ²⁺ , and others) Anions (Cl ⁻ , HCO ₃ ⁻) Water Urea and lipid – soluble solutes Small proteins	
Loop of Henle: Descending loop Ascending loop	Water Na ⁺ and Cl ⁻	
Distal convoluted tubule	Na ⁺ Anions	
Collecting tubule	Water Urea	

Table 6.1. — Reabsorption capabilities of different segments of the renal tubules and collecting tubules

Figure 6.9. — Directional movement of reabsorbed substances (by Elaine N. Marieb, 1989)

During reabsorption substances pass from the filtrate through the tubule cell's apical membrane and then through the tubule cell to its basolateral membrane. From there the substances move through the basolateral membrane into the intestinal fluid and then into the peritubular capillary blood.

Mechanisms of reabsorption

There are two ways for reabsorption of substance from tubule lumen into interstitial fluid.

1) para-cellular way (between the cells);

2) trans-cellular (through the cell; substances should overcome two plasma membranes of the tubule cell).

Main molecular mechanisms of reabsorption

1) endocytosis;

2) passive transport (for example, diffusion);

3) active transport (transmission of substances through membranes against concentration and electrochemical gradients with energy consumption), which can be divided into two types:

— primary-active transport - transmission of substances due to energy of cellular metabolism (energy received immediately at splitting of molecules ATP).

— secondary- active transport of substances against concentration gradient, but without using energy of cell immediately on this process (reabsorption of a substance happens with the help of special transmitting agent which should attach Na^+ ion ;this complex (transmitting agent + organic substance + Na^+) promotes moving of substances through membrane and its entering inside of cell).

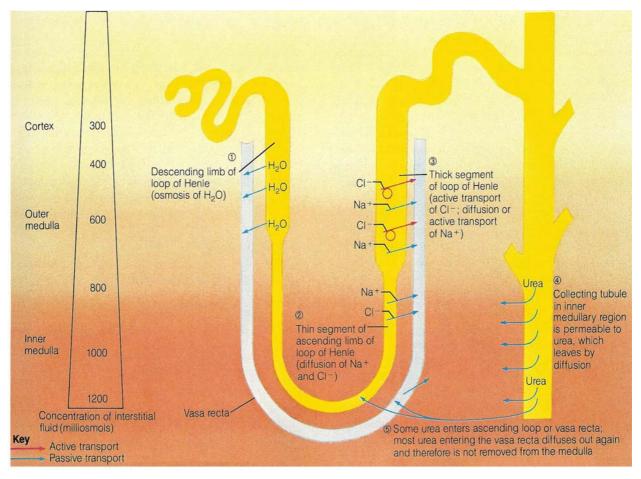


Figure 6.10. — The mechanism of establishing and maintaining the osmotic gradient (by Elaine N. Marieb, 1989)

1. The descending limb of the loop of Henle is relatively impermeable to solutes and freely permeable to water,

2. The thin segment of the ascending limb of the loop of Henle is freely permeable to sodium and chloride, poorly permeable to urea, and impermeable to water.

3. The thick segment of the ascending limb of the loop of Henle has an active transport mechanisms for chloride (and probably sodium) ions.

4. The collecting tubules in the deep medullary regions are permeable to urea.

5. The vasa recta removes very little urea, thus maintaining the osmotic gradient. Most of the urea that enters the vasa recta diffuses back out again.

If antidiuretic hormone is released, it courses the pores of the collecting tubules to enlarge so that water passes easily into the interstitial space. When the filtrate flows through the collecting tubules and is subjected to the hyperosmolar conditions in the medulla, water rapidly leaves the filtrate and exits the collecting tubules. Depending of the amount of antidiuretic hormone released (which is keyed to the level of body hydration), urine concentration may rise as high as 1200mOsm, the concentration of the interstitial fluid in the deepest part of the medulla.

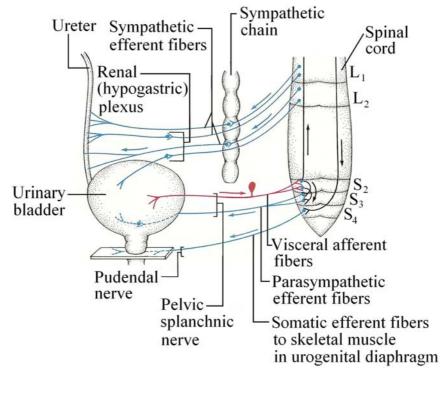
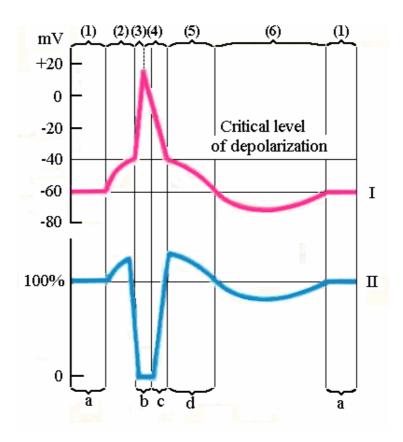



Figure 6.11. — Micturition (urination) reflex arc pathway (by Elaine N. Marieb, 1989)

Stretching of the bladder wall by urine causes afferent impulses to be transmitted to the sacral region of the spinal cord. Efferent impulses are delivered to the bladder detrusor muscle and the internal sphincter via parasympathetic fibers of the pelvis nerves. The pudendal nerve serves the skeletal muscle fibers of the voluntary external sphincter (largely in the pelvic diaphragm). The role of sympathetic efferents is controversial.

Unite 7

PHYSIOLOGY OF EXCITABLE TISSUES

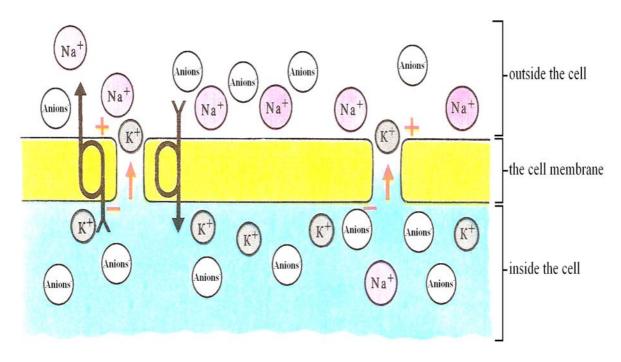
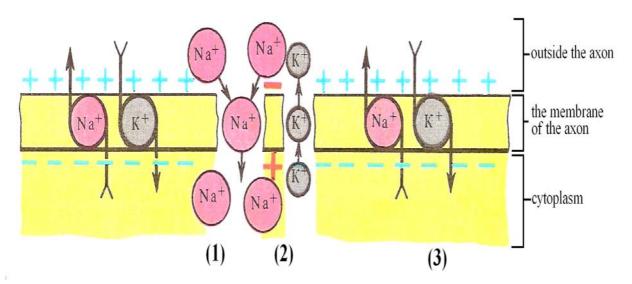
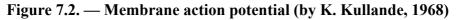




Figure 7.1. — Membrane resting potential (by Korobkov A. V., Chesnokova S. A., 1986)

External surface of the cell membrane is charged positively «+» and the internal surface of the cell membrane - negative «-» The difference of charges between the external and internal membranes is called membrane resting potential.

(1) Cell membrane becomes permeable for ions of Na^+ and they enter inside the cell. The internal surface of membrane becomes positive charged and the external surface of the membrane becomes negative charged. Change of charges on the internal and external surfaces of the membrane corresponds to depolarization phase.

(2) Sodium channels close, and potassium channels which have been partially closed, open. The ions of K^+ go out of the cell. This action potential phase is called repolarization.

(3) The action of $Na^+ - K^+$ -pump is restored.

Regeneration of membrane resting potential is observed.

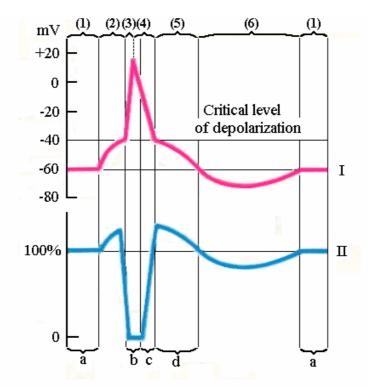


Figure 7.3. — Changes of the membrane potential and excitability during excitation (by Korobkov A. V., Chesnokova S. A., 1986)

I — Changes of the membrane potential:

- (1) Membrane resting potential
- Phases of membrane action potential:
- (2) Slow depolarization;
- (3) Fast depolarization.
- (4) Fast repolarization;
- (5) Slow repolarization
- (6) Hyperpolarization

II — Changes of excitability:

- (a) Normal excitability
- (b) Absolute refractory period
- (c) Relative refractory period
- (d) Supernormal or exaltation period

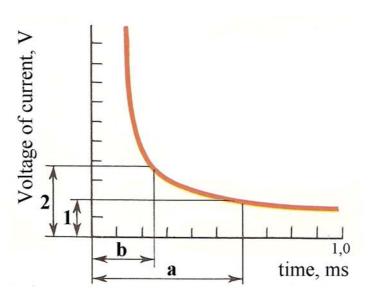


Figure 7.4. — The curve «force-duration» (by Lapic and others, 1926) 1 — rheobase; 2 — double rheobase; a — available time; b — chronoxy



Figure 7.5. — Conduction of excitation in nerve fibers (G. Bendoll, 1970)

Type of fibers	Diameter, mcm	Speed of conduction, m/sec	Functions
Αα	13–22	70–120	Efferent fibers conduct excitation to skeletal muscles, afferent fibers conduct excitation from muscle receptors
Αβ	8–13	40–70	Afferent fibers conduct excitation from touch and tendinous receptors
Αγ	4–8	15-40	Afferent fibers conduct excitation from touch and pressure receptors, efferent fibers conduct excita- tion to skeletal spindles
В	1–3	3–14	Preganglionic fibers of vegetative nervous system
С	0.5–1.0	0.5–1.0	Postganglionic fibers of vegetative nervous sys- tem, afferent fibers conduct excitation from pain, temperature and pressure receptors

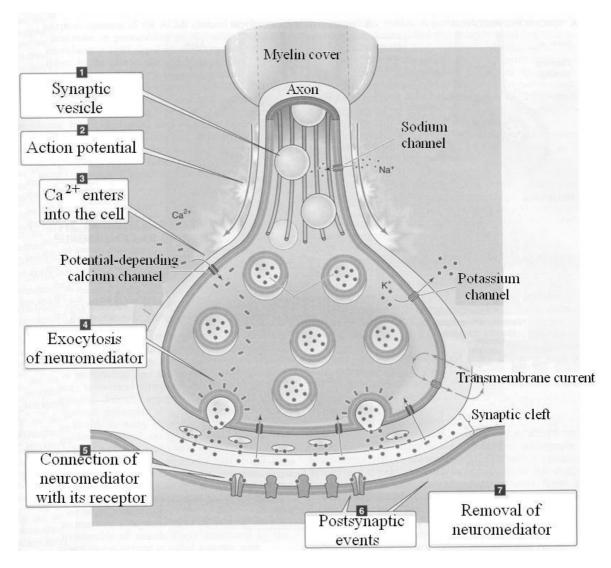


Figure 7.6. — Stages of signal transmission in synapse (by Orlov R.S., Nozdrachev A. D., 2005)

Classification of synapses

- 1. By the way of transmission:
 - chemical synapses;
 - electrical synapses.
- 2. By the type of excreted mediator chemical synapses are divided into:
 - adrenergic (adrenalin is mediator);
 - cholinergic (acetylcholine is mediator).
- 3. By effect:
 - excitants;
 - inhibitors.
- 4. By location:
 - axoaxonic synapse;
 - axosomatic synapse;
 - axodendritic synapse;
 - dendrodendritic synapse;
 - somatodendritic synapse.

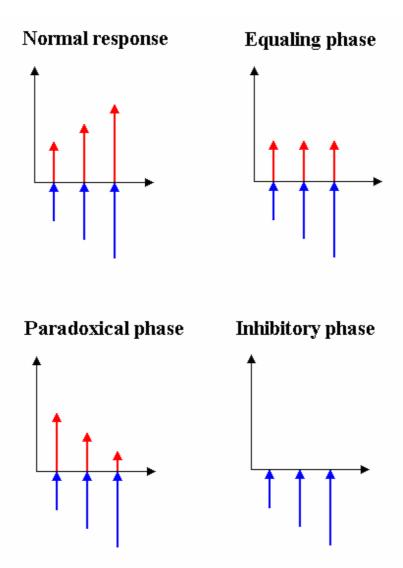


Figure 7.7. — Parabiosis (by Vvedensky)

The arrows above show the force of irritant (current) The arrows below show the force of response (the force of muscular contraction)

The state of decreasing of lability is called parabiosis. Threre are 3 phases of parabiosis:

1. Equaling phase. If to irritate nerve fibril with irritants of various force (weak and strong), the response of a muscle will be always identical.

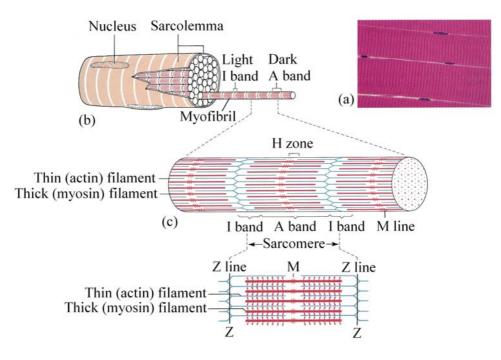
2. **Paradoxical phase.** In this case strong irritants induce weak response, weak irritants — on the contrary — strong one.

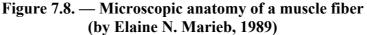
3. Inhibitory phase. Both strong and weak irritants cannot induce response.

In the human organism muscular tissue according to structure and physiological properties is divided <u>into 3 types</u>:

1. Skeletal.

2. Unstriped.

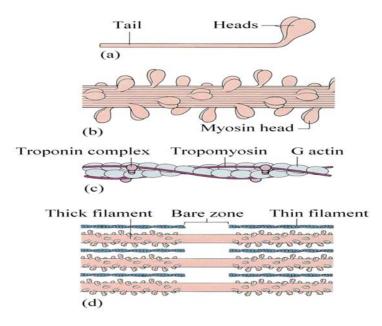

3. Cardiac.


All types of muscles possess some properties:

1. Excitability.

2. Conduction.

3. Contractility, — change of length or strain, — and ability to relaxed.



(a) Photomicrograph of two isolated skeletal muscle cells (250x).

(b) One myofibril is shown extending from the cut end of a muscle fiber.

(c) A small portion of one myofibril is enlarged to show the myofilaments responsible for the banding pattern. Each sacromere, or contractile unit, extends from one Z line to the next.

Figure 7.9. — Myofilament composition in skeletal muscle (by Elaine N. Marieb, 1989)

(a) An individual myosin molecule has a stalklike tail, from which two «heads» protrude.

(b)Each thick filament consists of many myosin molecules.

(c) A thin filament contains two strands of F actin twisted together. Each strand is made up of G actin subunits. Tropomyosin molecules coil around the F actin. A troponin complex is attached to each tropomyosin molecule.

(d) Arrangement of the filaments in a sacromere (longitudinal view).

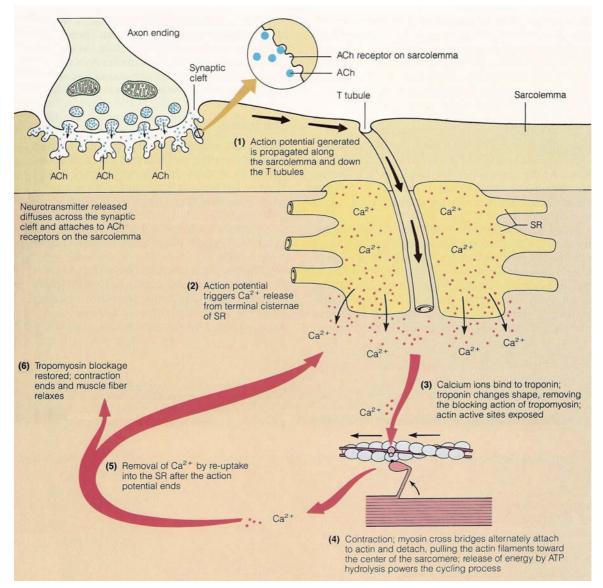
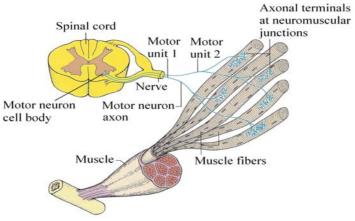
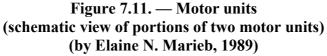
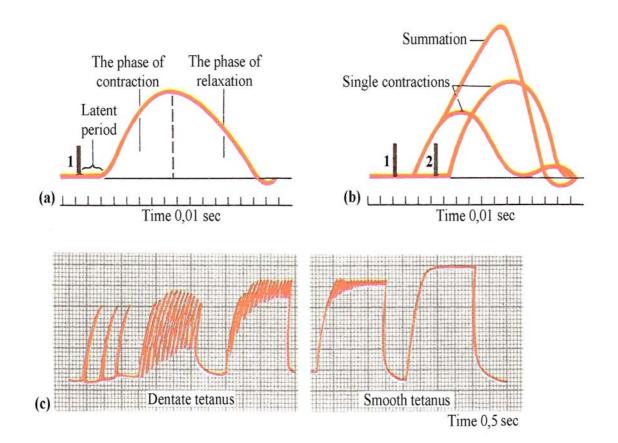
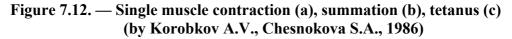




Figure 7.10. — Sequence of events in excitation-contraction coupling (by Elaine N. Marieb, 1989)

Events (1) through (5) indicate the sequence of events in the coupling process. As shown in the flow of events to the left, contraction continues until the calcium signal ends.




The cell bodies of the motor neurons reside in the spinal cord, and their axons extend to the muscle. Within the muscle, each axon divides into a number of axonal terminals, which are distributed to muscle fibers scattered through the muscle.

Each motor unit consists of a motor neuron and all of the muscular fibers it innervates.

Form	Туре	Characteristics of the type	Example
Dynamic form	Isotonic type	Muscle is shortened but does not change its strain	Walking
	Eccentric type	If a load on a muscle is more than its strain, the muscle is stretched, but does not change its strain	Lowering of a heavy object
Static form	Isometric type	Muscle changes its strain but does not change length	Maintenance of a posture or over- coming of terrestrial attraction.
Auxotonic or mixed		Muscle change its strain and length	Most of contractions are mixed.

Table 7.2. — Forms and types of muscle contractions

1 — the moment of giving of the first irritant signal

2 — the moment of giving of the second irritant signal

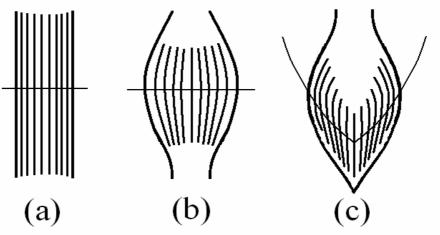
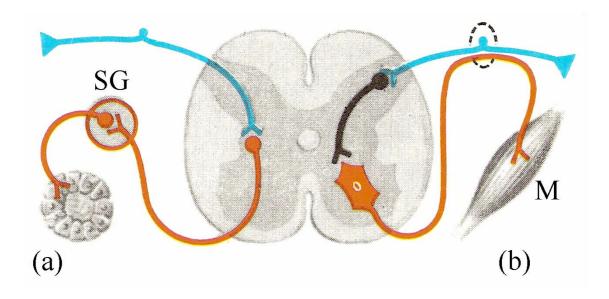



Figure 7.13. — The structure of different types of muscle and their physiological cross section (by Pokrovskiy V. M., Korotko G. F., 2000)

(a) Sartorius muscle; (b) Biceps brachii; (c) Gastrocnemius muscle

Unite 8

GENERAL AND PARTICULAR PHYSIOLOGY OF CENTRAL NERVOUS SYSTEM

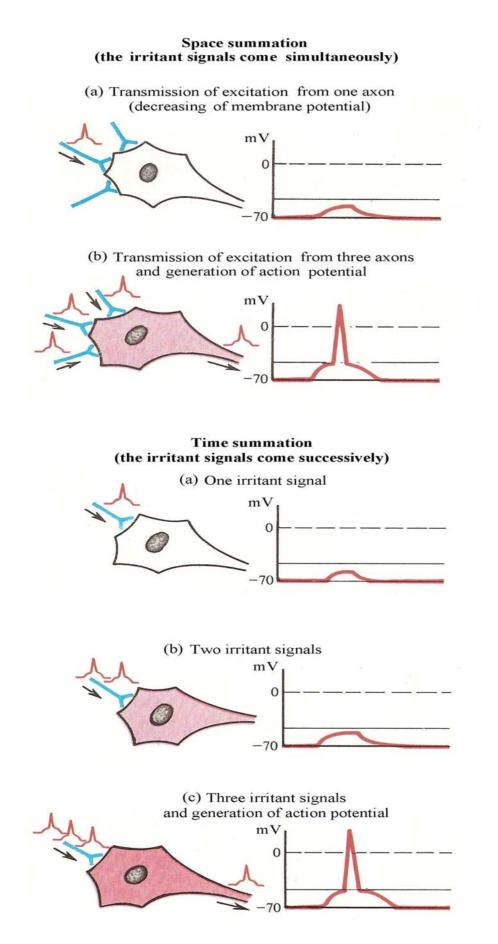


Figure 8.1. — Space and time summation in the nerve system (by Korobkov A. V., Chesnokova S. A., 1986)

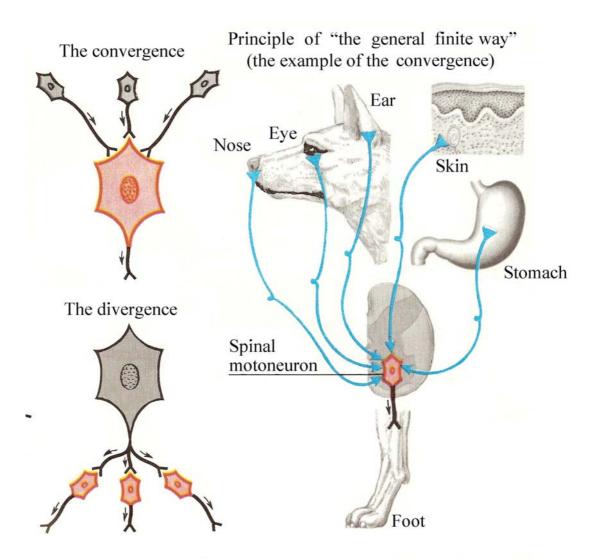


Figure 8.2. — Types of spreading of excitation in nerve system (by Korobkov A. V., Chesnokova S. A., 1986)

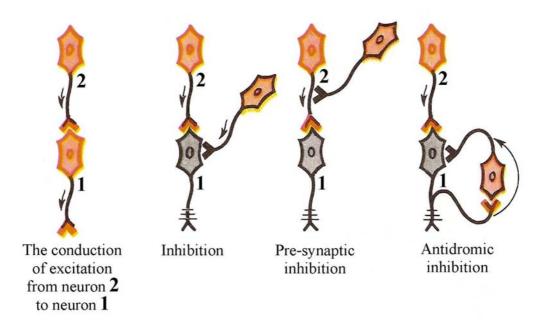


Figure 8.3. — Types of inhibition in the central nervous system (by Korobkov A. V., Chesnokova S. A., 1986)

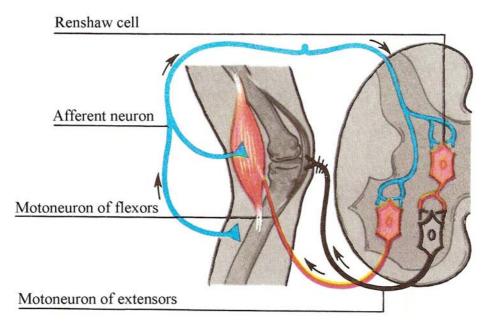


Figure 8.4. — Reciprocal inhibition (by Sherington, 1897)

Reciprocal inhibition: the same afferents which stimulate one group of cells, through intercalary neurons generate inhibition of other group of cells. The example: excitation of an afferent simultaneously causes excitation of the motorneuron of one muscle group (flexors) and reciprocal inhibition of the motorneuron of antagonist muscles (extensors). It happens because afferents branch in spinal cord, one of branches stimulate motoneurons of flexors, other form inhibition synapses on motoneurons of extensors (through the Renshaw cell).

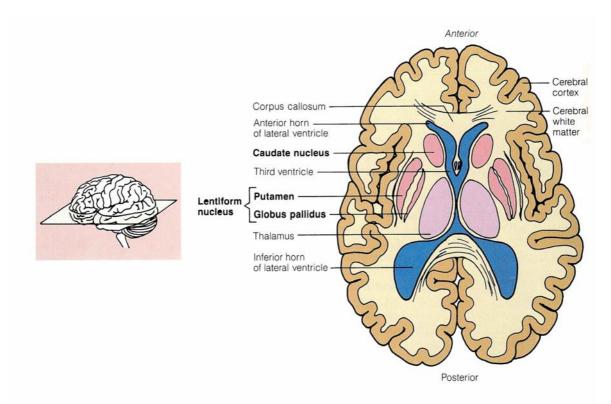


Figure 8.5. — A transverse section of the cerebrum and diencephalon showing the relationship of the basal nuclei to the thalamus and the lateral and third ventricles (by Elaine N. Marieb, 1989)

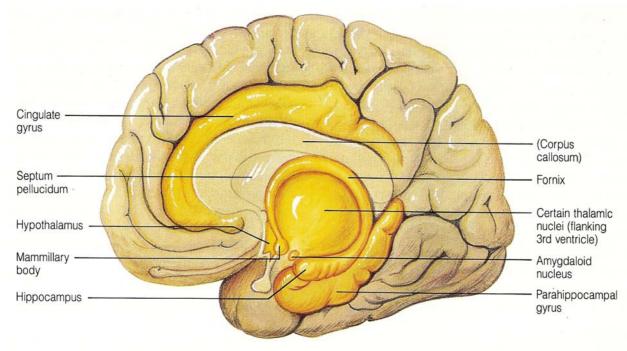


Figure 8.6. — Medial view of the brain, showing some of the structures that constitute the limbic system, the emotional-visceral brain (by Elaine N. Marieb, 1989)

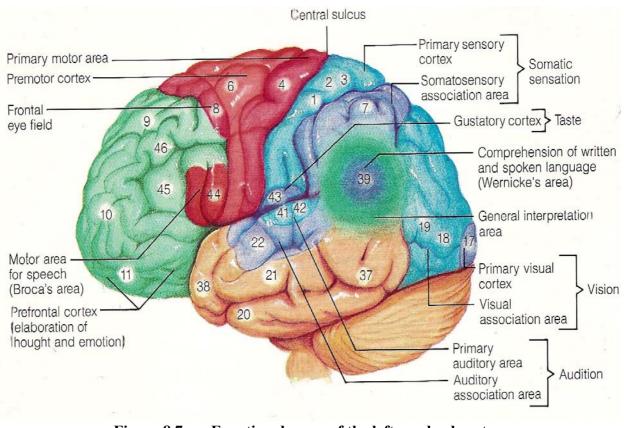


Figure 8.7. — Functional areas of the left cerebral cortex (by Elaine N. Marieb, 1989)

The olfactory area, which is deep to the temporal lobe on the medial hemispheric surface, is not identified. Numbers indicate regions plotted by the Brodman system.

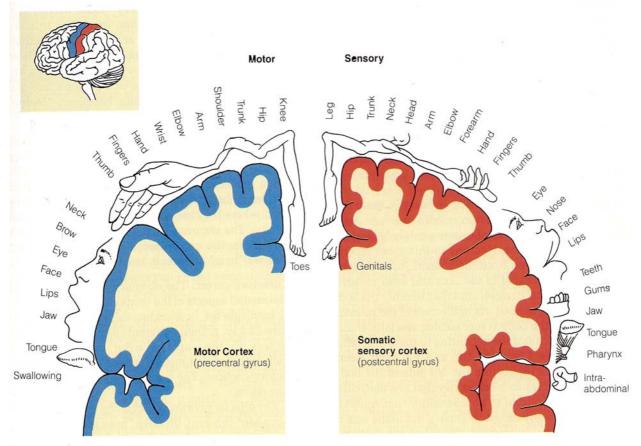


Figure 8.8. — Sensory and motor areas of the cerebral cortex (by Elaine N. Marieb, 1989)

The relative amount of cortical tissue devoted to each function is indicated by the amount of the gyrus occupied by the body area diagrams. The primary motor cortex is represented on the left, and the somatic sensory cortex on the right.

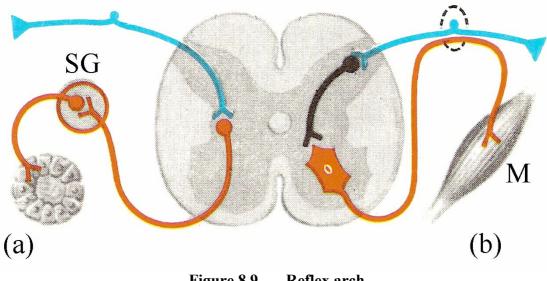


Figure 8.9. — Reflex arch (by Korobkov A. V., Chesnokova S. A., 1986)

- (a) reflex arch of the vegetative reflex
- (b) reflex arch of the somatic reflex
- SG sympathetic ganglion; M muscle

Table 8.1. — Differences of sympathetic department of vegetative nervous system from parasympathetic

Principle of difference	Sympathetic department	Parasympathetic departments
The localization of nerve centers in the brain	Thoracal-lumbar department of the spi- nal cord	Midbrain, medulla, sacral de- partment of spinal cord
Location of vegetative ganglions	Vertebral and prevertebral ganglions	Intramural plexuses
The excreted mediator	The main mediator is noradrenalin	The main mediator is acetylcho- line
Influence on the func- tion of organs	Ensures the power supply of an organ- ism (influences on the redistribution of blood flow, increases the heart rate, in- creases metabolism, increases the level of glucose in blood)	Corrects changes in the organism induced by sympathetic nervous system (restores and maintains homeostasis)

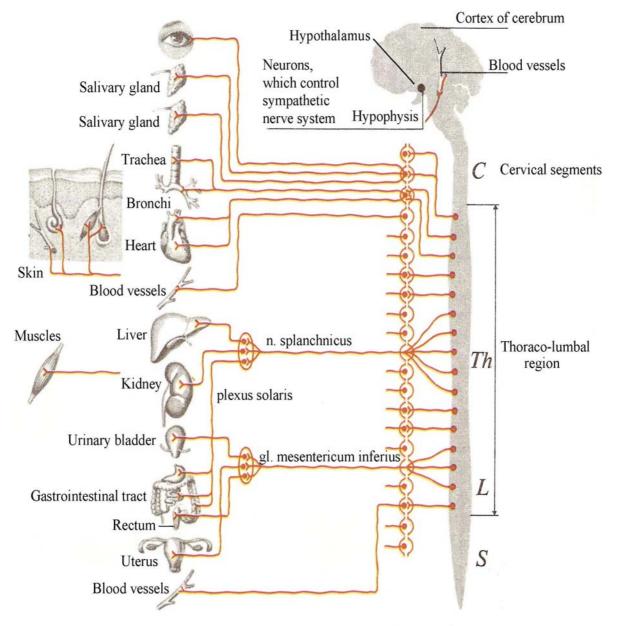
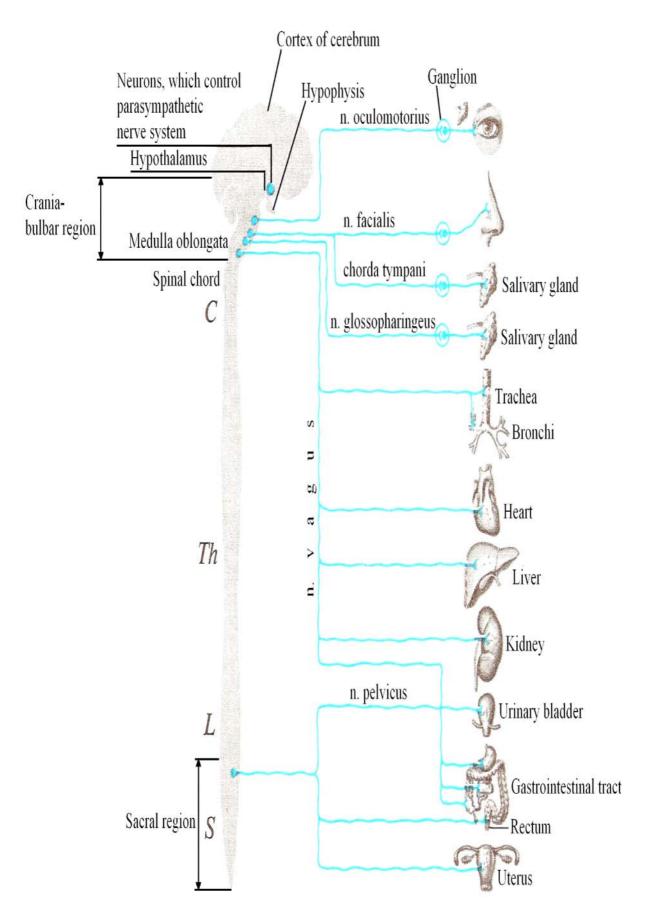
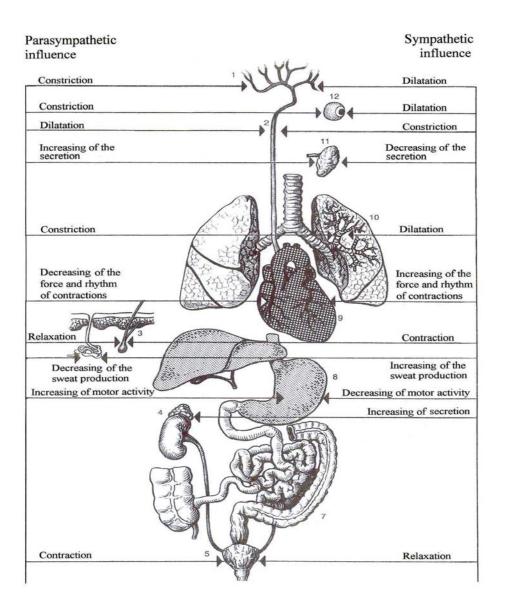
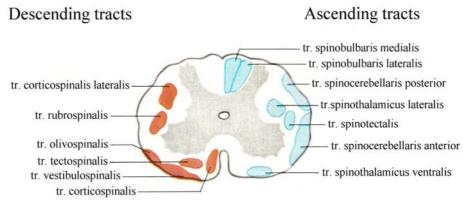
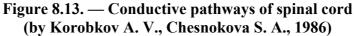
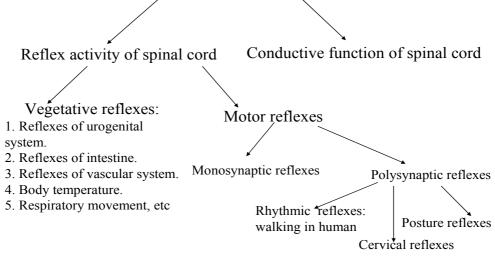


Figure 8.10. — General plan of the structure of sympathetic nerve system (by Korobkov A. V., Chesnokova S. A., 1986)


Figure 8.11. — General plan of the structure of parasympathetic nerve system (by Korobkov A. V., Chesnokova S. A., 1986)

1 – vessels of brain, 2 – periphery vessels, 3 – hair muscle, 4 – suprarenal gland, 5 – urinary bladder, 7 – intestines, 8 – stomach, 9 – heart, 10 – bronchi, 11 – salivary glands, 12 – pupil


Figure 8.12. — Changing of functions of different organs at irritation of sympathetic and parasympathetic nerve fibrils, which innervate them

Picture shows the cross- section of spinal chord.

Functions of spinal cord

Scheme 8.1. — Functions of spinal cord

Conductive tracts	Columns of spinal cord	Physiological importance		
I. ascer	I. ascending (sensory) tracts			
1. Tract of Goll	posterior	Touch sensibility, sense of body position and passive movements, sense of vibration		
2. Wedge-shaped fascicle of Burdach	-//-	-//-		
3. Dorsolateral tract	lateral	Tracts of pain and temperature sensi- tivity		
4. Dorsal spinocerebellar tract of Flexig	-//-	Impulses from muscle proprioceptors, receptors of ligaments and tendons		
5. Ventral spinocerebellar tract of Govers	_//_	_//-		
6. Dorsal spinothalamic tract	-//-	Pain and temperature sensitivity		
7. Spinotectal tract	-//-	Sensory tract of visual motor reflexes and pain sensitivity		
8. Ventral spinothalamic tract	front	Tactile sensitivity		
II. Descending (motor) tracts				
1. Lateral corticospinal tract (pyramidal)	lateral	Impulses to skeletal muscles Arbitrary movements.		
2. Rubrospinal tract	-//-	Impulses supporting the tone of skele- tal muscles.		
3. Dorsal vestibulospinal tract	-//-	Impulses providing pose keeping and body equilibrium.		
4. Olivospinal tract	_//_	Unknown function.		
5. Reticulospinal tract	front	Impulses support the tone of skeletal mus- cles, regulate condition of spinal vegetative centers and sensitivity of muscle spindles.		
6. Ventral vestibulospinal tract	-//-	Impulses providing pose keeping and body equilibrium.		
7. Tectospinal tract	-//-	Impulses provide optic and acoustic re- flexes.		
8. Ventral corticospinal tract (pyramidal)	front	Impulses to skeletal muscles Arbitrary movements.		

Name of a cranial nerve	Effect of action	Function
XII n. hypoglossus	motor	Innervates muscles of tongue.
XI n. accessorius	motor	Innervates muscles of neck.
X n. vagus	mixed	Afferent information goes from internal organs. Innervates muscles of gullet and lar- ynx, internal organs, heart.
IX n. glossopharyngeus	mixed	Innervates muscles of gullet.
VIII n. vestibulocochlearis	sensory	Afferent information goes from vesti- bular and ear apparatus.
VII n. facialis	mixed	Afferent information goes from gusta- tory receptors of tongue. Innervates mimic muscles.
VI n. abducens	motor	Innervates eye muscles.
V n. trigeminus	mixed	Afferent information goes from mu- cous membrane of nose, teeth, tongue. Innervates masticatory muscles and muscle stressing tympanic membrane.
IV n. troclearis	motor	Innervates eye muscles.
III n.oculomotorius	motor	Innervates eye muscles.
II n. opticus	sensory	Innervates retina.
I n. olfactorii	sensory	Innervates mucous membrane of. nose

Table 8.3. — Function characteristic of cranial nerves

Table 8.4. — Characteristics of cerebellar deficiency

Type of disorder	Characteristics
Asthenia	Increased fatigability of muscles, decreased force of muscle contraction.
Astasia	Impossibility to stay quiet (constant tremor of head)
Dystonia	Involuntary increase or decrease of muscile tone
Tremor	Small by amplitude fluctuation movement arising synchronously in dif- ferent parts of the body
Dysmetria	Disturbances of evenness movements
Hypermetria Hypometria Astasia	Patient carries the hand by an object which is tried to take. Patient does not carry the hand to an object which is tried to take. Disturbances of movement coordination.
Dysarthria	Disturbance of speech.

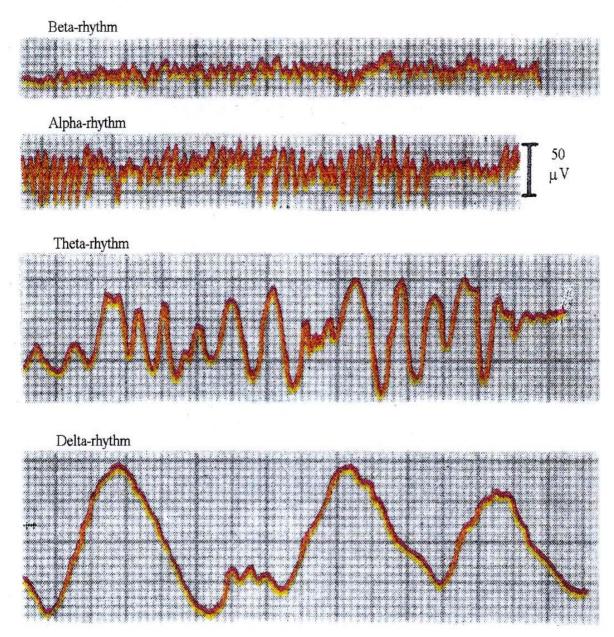


Figure 8.14. —The rhythms of electroencephalography (by Korobkov A. V., Chesnokova S. A., 1986)

Type of rhythm	Amplitude, μV	Frequency, Hertz	Conditions at which the type of rhythms is registrated
ά- Alpha	50	8-13	At condition of mental and physical rest with closed eyes
β- Beta	25	14–30	At condition of mental and physical activity
θ- Theta	100–150	4–7	During falling asleep, at condition of moderate hypoxia and narcosis
∆- Delta	250-300	3–5	At loss of consciousness, during deep sleep, hypoxia and narcosis, at damage of cerebral cortex

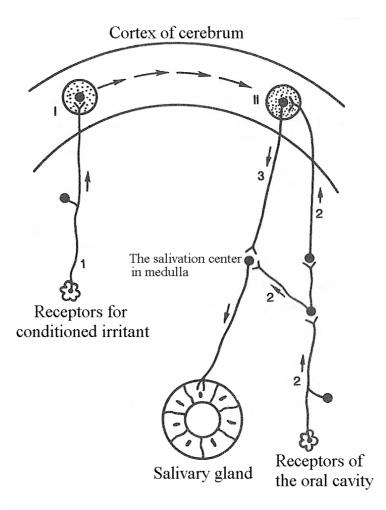
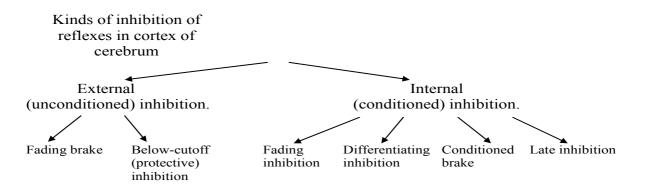


Figure 8.15. — Formation of conditioned reflex (by Pokrovskiy V. M., Korotko G. F., 2000)

I 3 the focus of excitation in cortex of cerebrum, which is formed at the action of conditioned irritant;


II — the focus of excitation in cortex of cerebrum, which is formed at the action of unconditioned irritant;

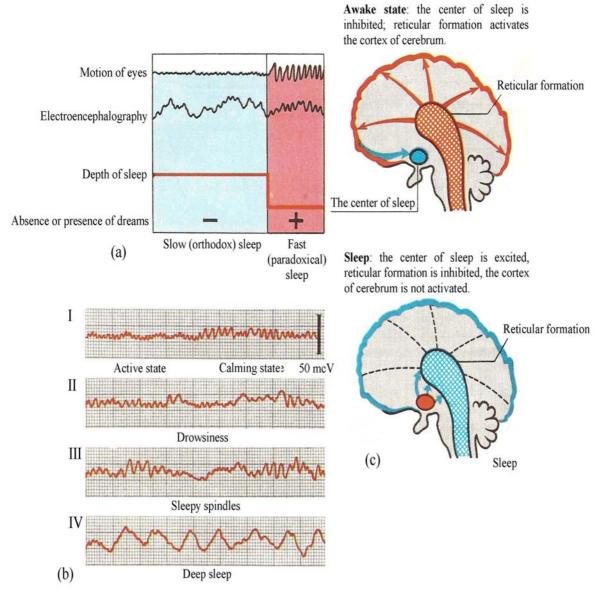
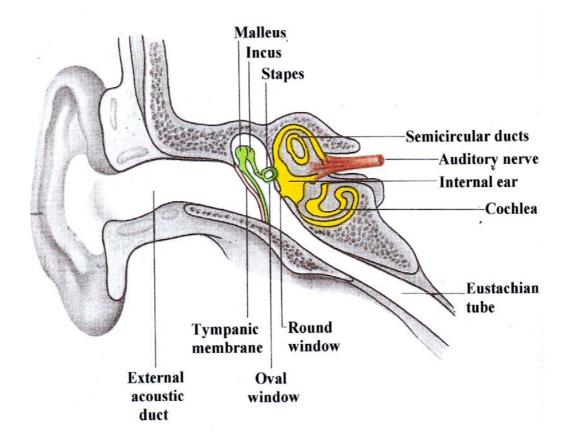
1 — afferent nerve ways of conditioned signal;

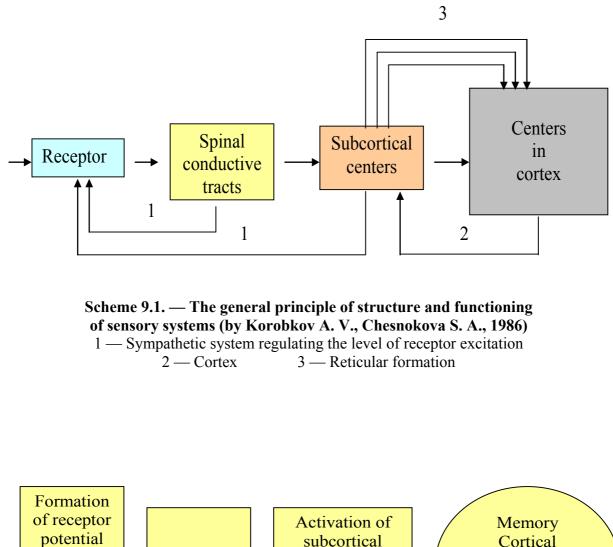
2 — afferent nerve ways of unconditioned signal;

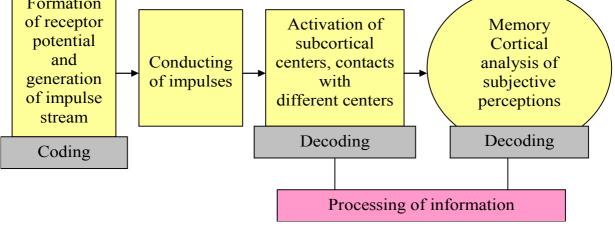
3 — efferent nerve ways.

At multiple repetition of action of conditioned and unconditioned irritants time connection between the focuses of excitation in the cortex of cerebrum is formed.

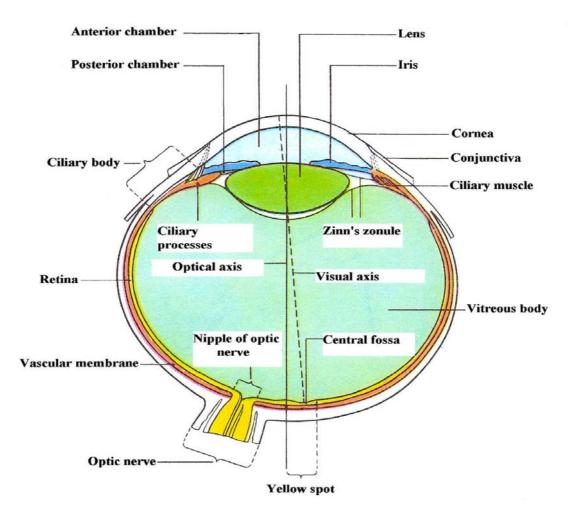
Scheme 8.2. — Kinds of inhibition of reflexes in cortex of cerebrum

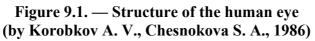




Figure 8.15. — Phases of sleep (by Korobkov A. V., Chesnokova S. A., 1986)


- (a) Fast and slow sleep.
- (b) Phases of falling asleep (I–IV).
- (c) Functional correlation of brain structures at state of sleep and awake state.

Unite 9


PHYSIOLOGY OF SENSORY SYSTEMS



Scheme 9.2. — Stages of analyzer functioning (by Korobkov A. V., Chesnokova S. A., 1986)

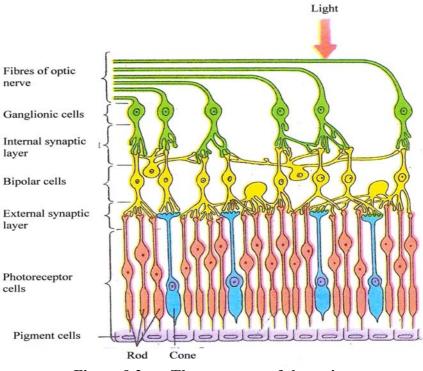


Figure 9.2. — The structure of the retina (by Korobkov A. V., Chesnokova S. A., 1986)

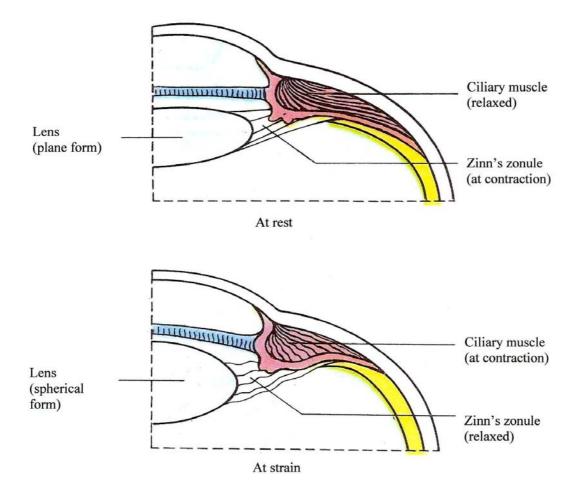
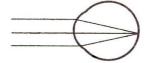
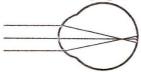
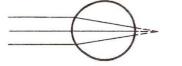




Figure 9.3. — The mechanism of the accommodation of an eye (by Korobkov A. V., Chesnokova S. A., 1986)

Refraction in the normal eye



Refraction at myopia

Optic correction of myopia

Refraction at hypermetropia

Optic correction of hypermetropia

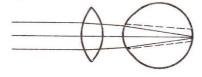


Figure 9.4. — Refraction in the normal eye, at myopia and hypermetropia. Optic correction of myopia and hypermetropia (by Pokrovskiy V.M., Korotko G.F., 2000)

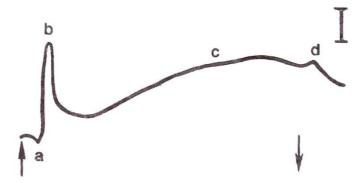


Figure 9.5. — Electroretinogram (by Pokrovskiy V. M., Korotko G. F., 2000)

The summary electrical response of the retina of the eye to the action of light is called electroretinogram (ERG). ERG distinguishes several typical waves. Wave a reflects excitation of internal segments of photoreceptors and horizontal cells. The wave b appears from the activation of glial cells of the retina by ions of potassium released at excitation of bipolar and amacrinal neurons. Wave c reflects activation of cells of pigment epithelium, and wave d - horizontal cells.

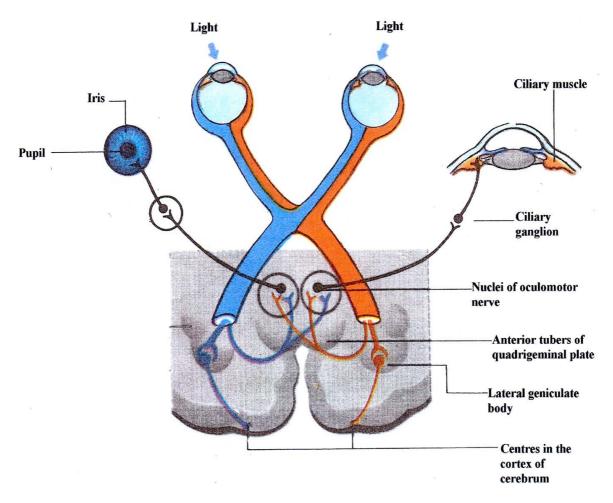
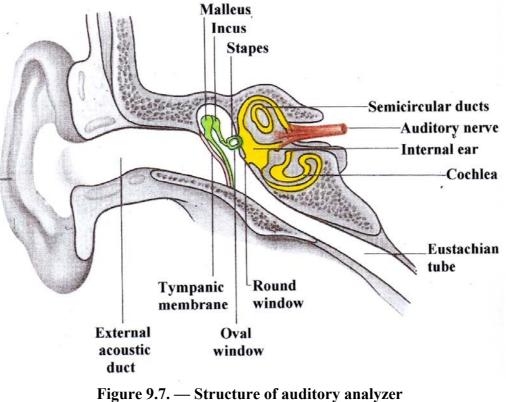
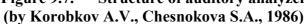
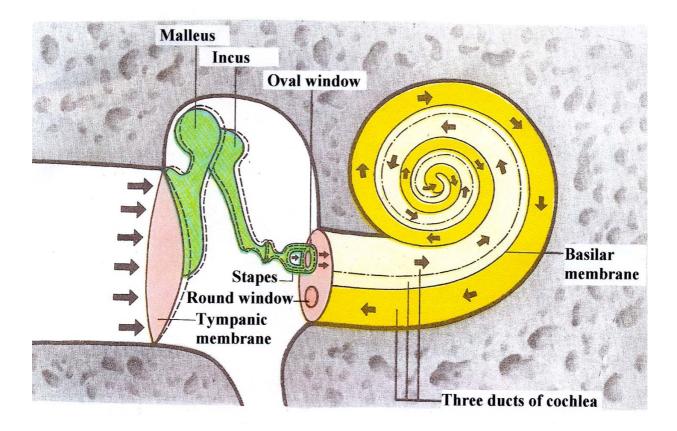





Figure 9.6. — The connection of optic ways with the process of control of the pupil's diameter and accommodation process (by Korobkov A. V., Chesnokova S. A., 1986)

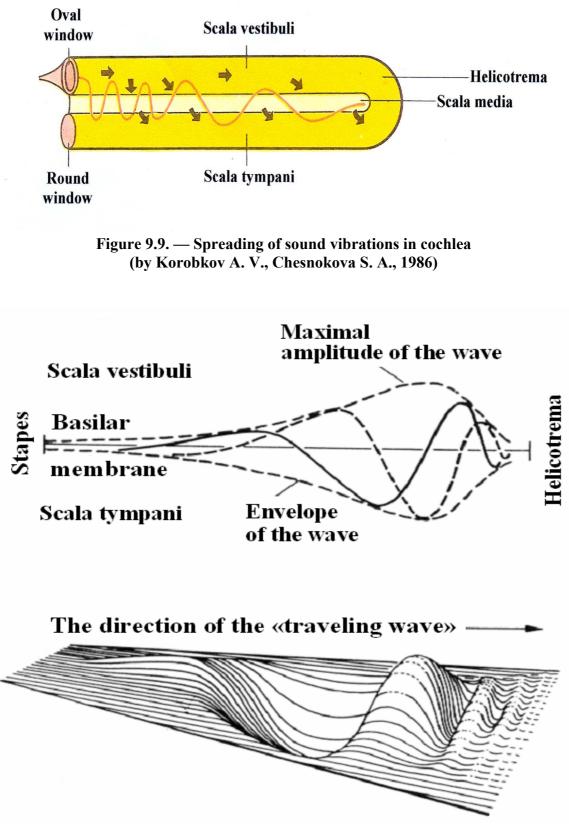
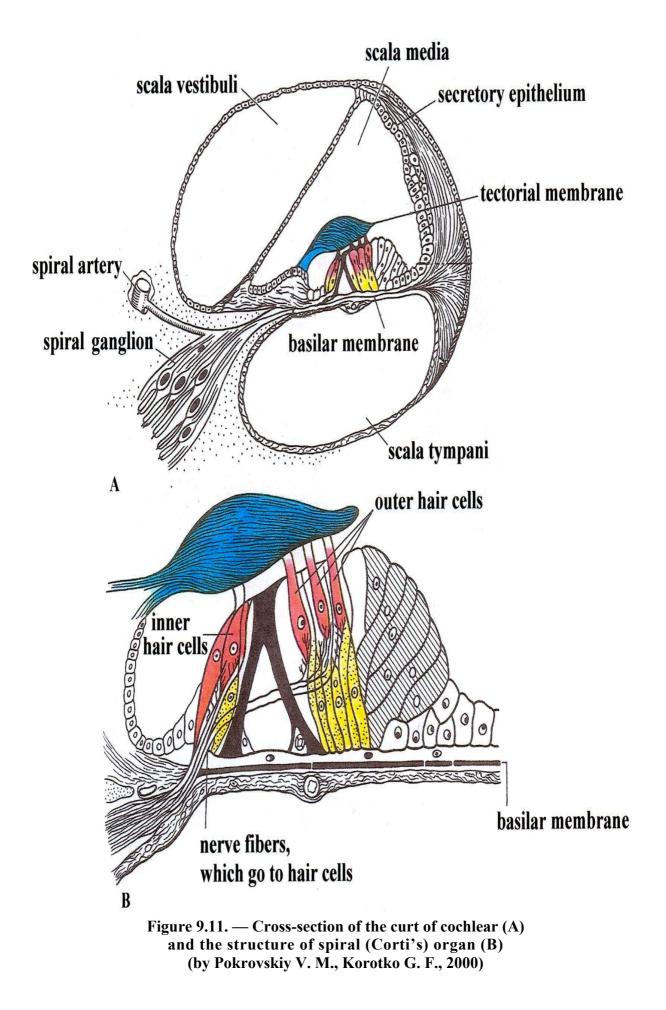
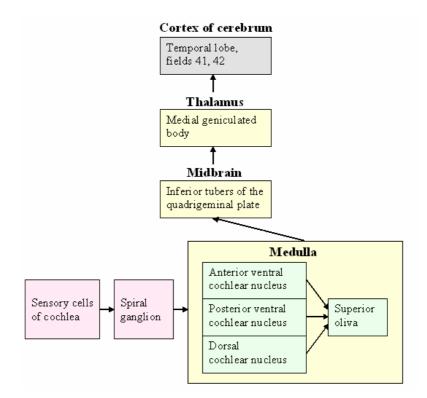




Figure 9.10. — The theory of a «traveling wave»

The basilar membrane is mostly rigid at the base of cochlea, i.e. at its narrowest point. Towards the apex its rigidity decreases. At vibration of the membrane wave «runs» from its base to the apex. High-frequency vibrations pass by the basilar membrane in short distance, and long low-frequency waves pass more far.

Scheme 9.3. — Scheme of auditory analyzer (by Vlasova A., 1980)

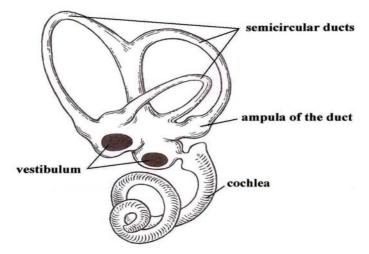


Figure 9.12. — The structure of the labyrinth of the temporal bone (by Pokrovskiy V. M., Korotko G. F., 2000)

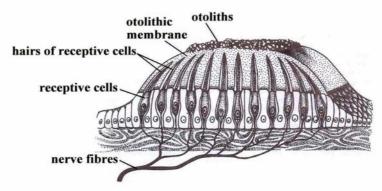


Figure 9.13. — The structure of the otolithic apparatus (by Pokrovskiy V. M., Korotko G. F., 2000)

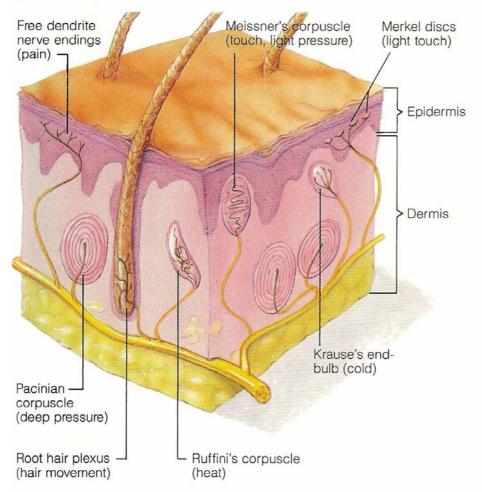


Figure 9.14. — Afferent and efferent connections of the vestibular apparatus (by Korobkov A. V., Chesnokova S. A., 1986)

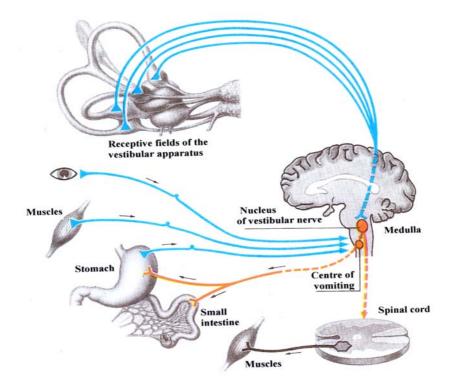
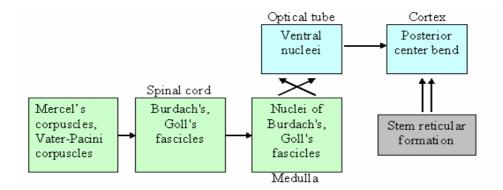
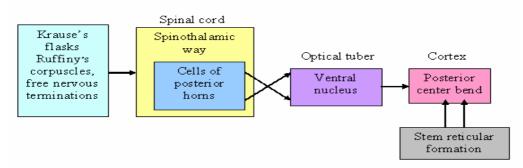
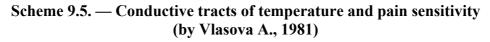





Figure 9.15. — Skin receptors (by Elaine N. Marieb, 1989)

Scheme 9.4. — Conductive tracts of tactile sensitivity (by Vlasova A., 1981)

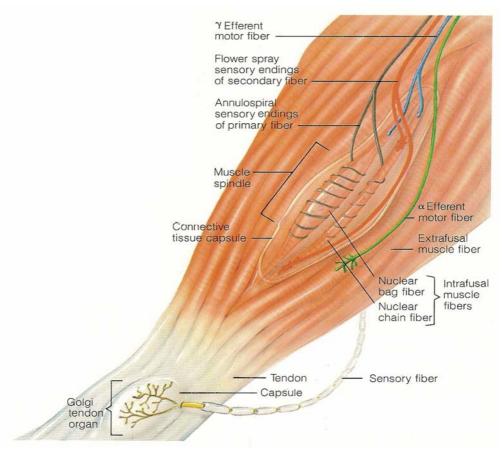


Figure 9.15. — The muscle spindle and Golgi tendon receptor (by Elaine N. Marieb, 1989)

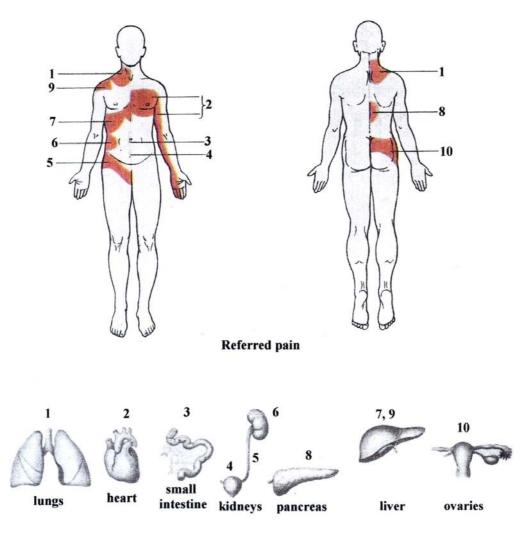


Figure 9.16. — Pain zones on the surface of skin, which appear at the affection of internal organs (by Korobkov A. V., Chesnokova S. A., 1986)

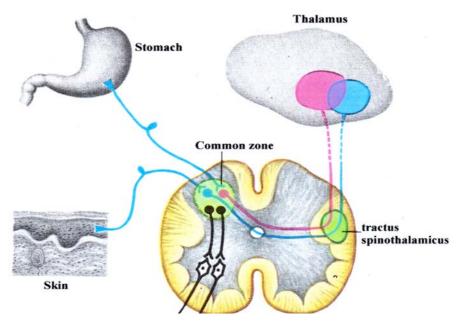


Figure 9.17. — Supposed mechanism of the origin of referred pain (by Korobkov A. V., Chesnokova S. A., 1986)

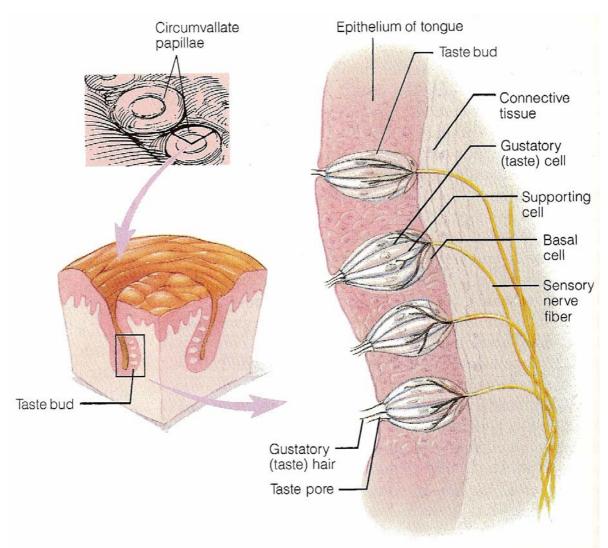


Figure 9.18. — Structure of taste buds (by Elaine N. Marieb, 1989)

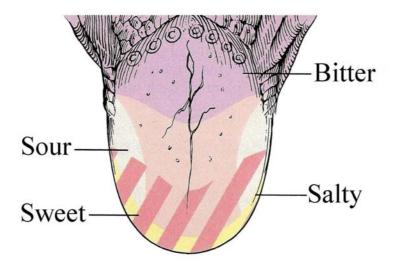


Figure 9.19. — Relative patterns of taste sensitivity on the tongue dorsum (by Elaine N. Marieb, 1989)

Since the area most sensitive to sweet overlaps the sour and salty areas, the sweet area is indicated by stripes.

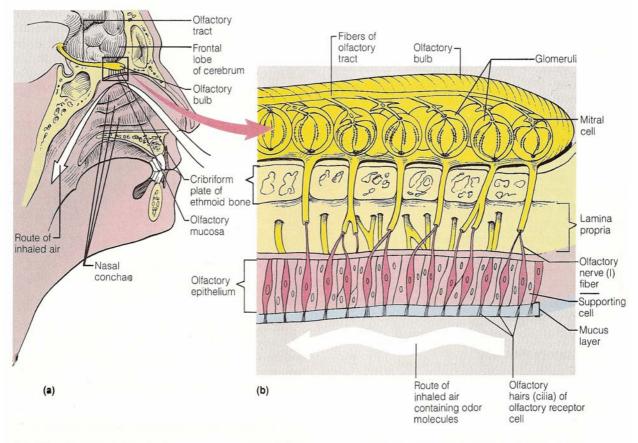


Figure 9.20. — Olfactory receptors (by Elaine N. Marieb, 1989)

(a) Site of olfactory epithelium in the superior aspect of the nasal cavity.

(b) Enlarged view illustrating the cellular composition of the olfactory epithelium and the course of the fibers of the olfactory nerve (I) through the ethmoid bone to synapse in the overlying olfactory bulb. The glomeruli and mitral cells (output cells) within the olfactory bulb are also shown.

BASIC PHYSIOLOGIC CONSTANT

Constant of blood	system
Amount of blood in adults (6–8% of body weight)	4,5–61
Hematocrit (m)	0,44–0,46
(f)	0,41–0,43
Blood: deposited	45–50 %
circulating	50–55 %
Volume of blood plasma	approx. 3 l
Structure of blood plasma:	
Water	90–92%
Solid residual	8–10%
General protein	65–80 g/l
Albumins	45 g/l
Globulins	20–35 g/l
Fibrinogen	3 g/l
Residual nitrogen	14,3–28,5 millimole/l
Glucose (whole blood)	3,30–5,55 millimole/l
(plasma)	3,88–6,10 millimole/l
Triglycerides	0,40–1,81 millimole/l
Inorganic substances	0,9 %
Viscosity of blood in adults	5
Relative density	1,050–1,060
pH of arterial bloods:	7,40
venous	7,35
pH borders compatible with life	7,0–7,8
Amount of erythrocytes: (m)	$4,5-5,0\times10^{12}$ /l (tera per litre)
(f)	$3,8-4,5\times10^{12}$ /l (tera per litre)
Amount of hemoglobin (m)	130–160 g/l
(f)	115–145 g/l
Color parameter: adults	0,8–1,0
Osmotic resistance of erythrocytes: Min	0,46–0,48% solution of NaCI
Max	0,32–0,34% solution of NaCI
Erythrocyte sedimentation rate (m)	1–10 mm / hr
(f)	2–15 mm / hr
Neonatal	1–2 mm / hr
Leucocytes: amount in adults	$4-9\times10^9$ /l (giga per litre)
in newborns	$15-20\times10^9$ /l (giga per litre)
The leukocytic formula (%): Neutrophils:	
Myelocytes	0
Metamyelocytes	0-1
stab neutrophil	1-5
segmentonuclear	45-70
Eosinocytes	1-5
Basophils	0-1
Lymphocytes	20-40
Monocytes	20-40
Index of regeneration (shift to the left)	0,05-0,1
Amount of thrombocytes	$180-320\times10^{9}/l$ (giga per litre)
Blood coagulation time (by Lee-White)	5–7 min
Constant of cardiovasc	
	-
heart rate: in adults	60–80 / min
in neonatals	135–140 /min
Systolic volume of blood	65–70 ml

Minute and the effect of the state of the st	4551
Minute volume of blood: at rest	4,5–51
at physical work	Up to 30 1
Time of cardiac cycle	0.75–1,0 sec
Arterial pressure: Max (systolic)	110–125 mm Hg
Min (diastolic)	60–85 mm Hg
Constant of respirate	
Respiration rate: in adults	12–18 / minute
in neonatal	40–55 / minute
Excursion of thorax: (m)	7–10 cm
(f)	5–8 cm
Interrelation of duration inspiration-expiration	1:1.2
Respiratory volume	0,3–0,91
Reserve volume of inspiration	1,5–2,01
Reserve volume of expiration	1,0–1,5 l
Vital capacity of lung	3,5–5,01
Residual volume	1,0–1,5 1
Functional residual capacity	2,51
Capacity of inspiration	2,01
Dead space	140–170 ml
Coefficient of lung ventilation	1/7
Minute volume of respiration: at rest	Up to 7 l
at physical activity	Up to 120 l/minute
Alveolar ventilation	4,2–5,6 l/minute
Maximal ventilation lung	120–170 l/minute
pO_2 in alveolar air	110 mm Hg
pCO_2 in alveolar air	40 mm Hg
pO_2 in arterial blood	100 mm Hg
pCO ₂ in arterial blood	39 mm Hg
pO_2 in venous blood	40 mm Hg
pCO_2 in venous blood	46 mm Hg
Volume of forced expiration	31
Oxygen capacity of blood	19 percent by volume
Ventilation-perfusion coefficient	0,8–0,9
Consumption of oxygen at rest	350 ml/min
Coefficient of use O_2 at rest	40%
Constant of digestiv	
Saliva: amount of excreted saliva daily	1,5 l/day
pH	7,4-8,0
Gastric juice: daily volume	2,0–2,51
pH	1,5–1,8
Intestinal juice: pH juice of small intestines	
	5,05-7,07
Pancreas juice: daily volume	1,5–2,01
pH Dila daila ashara	7,8–8,4
Bile: daily volume	500–1500 ml
Constants of metabolis	n and energy
Biological value of proteins:	70.050/
animal origin	70–95%
vegetable origin	60–65%
Daily need:	
Proteins	70–80 g
	(of them 30% are animals)
Fats	70–80 g
	(of them 75–80% are animals)
Carbohydrates	400–450 g

Water content in an organism	
Men	61%;
Women	51%; (compare 53,5%)
Neonatal	75%
Formation of water in an organism	
at oxidation:	
100 g of carbohydrates	55 ml
100 g of proteins	41 ml
100 fats	107 ml
Daily balance of water	near 2,5 l
Food value:	
1 g of fats	9,3 kcal (39,0 kilojoule)
1 g of carbohydrates	4,1 kcal (17,1 kilojoule)
1 g of proteins	4,1 kcal (17,1 kilojoule)
Respiratory coefficient	
at oxidation in an organism	
Carbohydrates	1
Fats	0,7
Proteins	0,8
The basic metabolism:	
Men	7117 kilojoule (1700 kcal) a day
Women	6410 kilojoule (1530 kcal) a day
Constants of thermo	regulation
temperature	
axilla	36,5–36,9°C
in oral cavity	36,4–37,2°C
rectum	36,8–37,6°C
daily temperature fluctuation	
Max	at 4–6 p.m.
Min	at 3–4 a.m.
hyperthermia	body temperature > 37°C
hypothermia	body temperature < 35°C
Constants of exc	
Efficient filtration pressure	20 mm Hg
General filtration surface of glomuluses	$1.5-2 \text{ m}^2$
Renal blood flow	of 1200 ml/minutes
Renal plasma flow	650 ml/minutes
Amount of initial urine a day	150–1701
Amount of final urine a day	1,51
Relative density	1,012
Color	from amber — yellow to stramineous
Transparence	transparent
pH Constants of sonsor	5,0-7,0
Constants of sensor Frequency of sound fluctuations heard by the person	16–20000 Hz
Closest point of clear vision	10–20000 HZ 10 cm
Acuity of vision (normal)	1,0 and more
Acuity of vision (normal)	

LITERATURE

Basic

1. Физиология человека: учебник; под ред. В. М. Покровского и Г. Ф. Коротько. В 2 т. — М.: Медицина, 1997.

2. Физиология человека / Под ред. Р. Шмидта и Г. Тевса. — М.: Мир, 1996.

3. Физиология человека / Под ред. Г. И. Косицкого. — М.: Медицина, 1985. — 544 с.

4. Human physiology: series of lectures for overseas students in English medium = Физиология человека: конспективный курс лекций для иностранных студентов, обучающихся на английском языке / А. И. Киеня, Э. М. Заика, В. А. Мельник; под редакцией проф. Э. С. Питкевича; перевод на анг. яз. Р. А. Карпов, В. А. Мельник. В 2 ч. — Гомель: УО «Гомельский государственный медицинский университет», 2006.

5. Заика, Э. М. Физиология сердечно-сосудистой системы: конспективный курс лекций / Э. М. Заика. — Гомель: Гомельский государственный медицинский университет, 2005. — 53 с.

6. *Киеня, А. И.* Физиология жидких сред организма человека: учеб. пособие / А. И. Киеня. — Гомель, 2001. — 70 с.

7. *Киеня, А. И.* Руководство к практическим занятиям по нормальной физиологии / А. И. Киеня, Э. М. Заика; под ред. проф. А. И. Киени. — Гомель, 1999. — 115 с.

8. Руководство к практическим занятиям по физиологии / Под ред. чл.-корр. АМН СССР Г. И. Косицкого и проф. В. А. Полянцева. — М.: Медицина, 1988.

9. Практикум по нормальной физиологии / Под ред. проф. Н. А. Агаджаняна и проф. А. В.Коробкова. — М.: Высшая школа, 1983.

10. Атлас по нормальной физиологии / Под ред. проф. Н. А. Агаджаняна. — М.: Высшая школа, 1986.

11. *Орлов, Р. М.* Нормальная физиолгия: учебник / Р. М. Орлов, А. Д. Наздрачев. — М.: ГЭОТАР-Медиа, 2005. — 696 с.

Optional

1. *Киеня, А. И.* Здоровый человек. Основные показатели: справочник / А. И. Киеня, Ю. И. Бандажевский. — Мн.: «Экоперспектива». — 1997.

2. *Киеня, А. И.* Международная система единиц в медицине и биологии / А. И. Киеня, Ю. И. Бандажевский. — Гомель, 1995.

3. Textbook of medical physiology // C. Guyton. — 1986. — 1057 p.

4. Human anatomy and physiology // Alexander P., Spence-Elliott B. Masson.

5. Human physiology. The mechanisms of body function // Arthur J. Vander James H Sherman Dorothy S. Luciano. — 1986. — 715 p.

6. Lecture notes on human physiology // John J Bray, Patricia A. Cragg, Anthony D. C. Macknight, Roland G. Mills and Douglass W. Taylor.

7. Human anatomy and physiology // Elaine N. Maried. — 1989. — 995 p.

8. Review of medical Physiology, International edition. — 2003. — 912 p.

CONTENTS

LITERATURE 110
BASIC PHYSIOLOGIC CONSTANT 107
Unite 9 PHYSIOLOGY OF SENSORY SYSTEMS
Unite 8 GENERAL AND PARTICULAR PHYSIOLOGY OF CENTRAL NERVOUS SYSTEM
Unite 7 PHYSIOLOGY OF EXCITABLE TISSUES 69
Unite 6 PHYSIOLOGY OF EXCRETION61
Unite 5 METABOLISM. ENERGY METABOLISM. THERMOREGULATION
Unite 4 PHYSIOLOGY OF DIGESTIVE SYSTEM
Unite 3 PHYSIOLOGY OF RESPIRATORY SYSTEM
Unite 2 PHYSIOLOGY OF CARDIOVASCULAR SYSTEM17
Unite 1 PHYSIOLOGY OF BLOOD SYSTEM

Учебное издание

Мельник Виктор Александрович Брель Юлия Игоревна Шевко Наталья Борисовна Мельник Светлана Николаевна

ФИЗИОЛОГИЯ ЧЕЛОВЕКА

учебно-методическое пособие для иностранных студентов, обучающихся на английском языке

Под ред. **Э.** *С. Питкевича* Перевод на англ. язык *Ю. И. Брель, В. А. Мельника*

Подписано в печать 04. 10. 2007 Формат 60×84¹/₁₆. Бумага офсетная 80 г/м². Гарнитура «Таймс» Усл. печ. л. 13,02. Тираж 100 экз. Заказ № 295

Издатель и полиграфическое исполнение Учреждение образования «Гомельский государственный медицинский университет» 246000, г. Гомель, ул. Ланге, 5 ЛИ № 02330/0133072 от 30. 04. 2004