МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

Кафедра биологической химии

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО БИОЛОГИЧЕСКОЙ ХИМИИ

Учебно-методическое пособие для студентов 2 курса лечебного, медико-профилактического, медико-диагностического факультетов и факультета подготовки специалистов для зарубежных стран

УДК 577(075.8) ББК 28.072 я7 С 23

Авторы:

А. И. Грицук, В. Т. Свергун, А. Н. Коваль, С. М. Сергеенко

Рецензент:

доктор медицинских наук, профессор, заведующий кафедрой нормальной физиологии Гомельского государственного медицинского университета Э. С. Питкевич

С 23 Сборник тестовых заданий по биологической химии: учеб.-метод. пособие для студентов 2 курса лечебного, медико-профилактического, медико-диагностического факультетов и факультета подготовки специалистов для зарубежных стран / А. И. Грицук [и др.]. — Гомель: Учреждение образования «Гомельский государственный медицинский университет», 2008. — 76 с.

ISBN 978-985-506-175-6

Представлены в краткой форме вопросы и ответы на них, что способствует четкому усвоению и закреплению знаний по представленным разделам биологической химии и значительно повышает качество подготовки студентов по предмету.

Утверждено и рекомендовано к изданию Центральным учебным научнометодическим советом учреждения образования «Гомельский государственный медицинский университет» 4 января 2008 г., протокол № 1

> УДК 577(075.8) ББК 28.072 я7

ISBN 978-985-506-175-6

© Учреждение образования «Гомельский государственный медицинский университет», 2008

СПИСОК СОКРАЩЕНИЙ

3-ФГА — 3-фосфоглицериновый альдегид ΑДФ — аденозиндифосфат АКТГ — адренокортикотропный гормон — аланинаминотрансфераза АлАТ ΑМФ — аденозинмонофосфат цАМФ — циклический аденозин-3',5'-монофосфат **AcAT** — аспартатаминотрансфераза ΑТФ аденозинтрифосфат — аденозинтрифосфатаза АТФаза ГДФ — гуанозиндифосфат ГΤФ — гуанозинтрифосфат ДАГ — диацилглицерол — дезоксирибонуклеиновая кислота ДНК ИФР — инсулиноподобный фактор роста кат — катал KoA — коэнзим А KoQ — коэнзим Q (убихинон) ЛДГ — лактатдегидрогеназа ЛПВП — липопротеиды высокой плотности ЛПНП — липопротеиды низкой плотности ЛПОВП — липопротеиды очень высокой плотности ЛПОНП — липопротеиды очень низкой плотности ЛППП — липопротеиды промежуточной плотности ЛГ — лютеинезирующий гормон — окисленный никотинамидадениндинуклеотид НАД+ HAДH + H+— восстановленный никотинамидадениндинуклеотид НАДФ+ — окисленный никотинамидадениндинуклеотидфосфат НАДФН + Н+ — восстановленный никотинамидадениндинуклеотидфосфат ПВК — пировиноградная кислота ПОЛ — перекисное окисление липидов ПОМК — проопиомеланокортин РНК — рибонуклеиновая кислота — матричная РНК мРНК тРНК — транспортная РНК СТГ — соматотропный гормон T3 — трииодтиронин T4 — тироксин ТΠФ — тиаминпирофосфат ТТГ — тиреотропный гормон УДФ — уридиндифосфат УΤФ — уридинтрифосфат — окисленный флафинадениндинуклеотид ФАД ФАДН2 — восстановленный флафинадениндинуклеотид ΦДА фосфодиоксиацетон — фосфоенолпируват ΦΕΠ

— фосфоенолпируваткарбоксикиназа

— флавинмононуклеотид

ΦΕΠΚΚ

ФМН

ФСГ — фолликулостимулирующий гормон

ХМ — хиломикроны

— цикл трикарбоновых кислот

<u>— цитидинтрифосфат</u>

ЩУК — щавелеуксусная кислота

ЭПР — эндоплазматический ретикулум

[E] — концентрация фермента IP3 — инозитолтрифосфат Кт — константа Михаэлиса

RF — рилизинг-факторы (факторы терминации) в синтезе белка

[S] — концентрация субстрата

Vmax — максимальная скорость реакции Voбр — скорость обратной реакции

ΔG
 — изменение свободной энергии Гиббса

РАЗДЕЛ 1 ЭНЗИМОЛОГИЯ

1. В фосфопротеидах связь между белком и простетической группой...

Варианты ответа:

- а) сложноэфирная;
- б) дисульфидная;
- в) водородная;
- г) О-гликозидная;
- д) N-гликозидная.

2. Выберите серосодержащую аминокислоту:

Варианты ответа:

- а) триптофан;
- б) серин;
- в) треонин;
- г) метионин.

3. К фибриллярным белкам относятся:

Варианты ответа:

- а) альбумины;
- б) гистоны;
- в) коллагены;
- г) глобулины.

4. Основный характер сообщает белкам следующая аминокислота:

Варианты ответа:

- а) аспартат;
- б) тирозин;
- в) лизин;
- г) аланин.

5. Связи, участвующие в формировании вторичной структуры белка:

Варианты ответа:

- а) пептидные;
- б) водородные;
- в) дисульфидные;
- г) ионные;
- д) гидрофобные.

6. Нормальное содержание белка в сыворотке крови в г/л:

- a) 1,5–2;
- б) 40–50;
- в) 65–80;
- г) 100-110.

7. Характерная реакция на пептидную связь:

Варианты ответа:

- а) биуретовая;
- б) нингидриновая;
- в) Фоля;
- г) ксантопротеиновая.

8. Метод обратимого осаждения белка:

Варианты ответа:

- а) электрофорез;
- б) диализ;
- в) высаливание;
- г) хроматография.

9. Выберите дикарбоновую аминокислоту:

Варианты ответа:

- а) лизин;
- б) аргинин;
- в) лейцин;
- г) аспартат.

10. Конечные продукты гидролиза простых белков:

Варианты ответа:

- а) пептиды;
- б) нуклеотиды;
- в) аминокислоты;
- г) гексозамины.

11. Вторичная структура белка — это:

Варианты ответа:

- а) спирализованная конфигурация полипептидной цепи;
- б) определенная последовательность аминокислот в цепи;
- в) совокупность нескольких полипептидных цепей;
- г) спирализованная конфигурация полинуклеотидной цепи;
- д) пространственная конфигурация пептидной спирали.

12. Третичная структура белка — это:

Варианты ответа:

- а) пространственная конфигурация пептидной спирали;
- б) спирализованная конфигурация полипептидной цепи;
- в) определенная последовательность аминокислот в цепи;
- г) совокупность нескольких полипептидных цепей;
- д) спирализованная конфигурация полинуклеотидной цепи.

13. Четвертичная структура белка — это:

- а) спирализованная конфигурация полипептидной цепи;
- б) определенная последовательность аминокислот в цепи;

- в) спирализованная конфигурация полинуклеотидной цепи;
- г) пространственная конфигурация пептидной спирали;
- д) совокупность нескольких полипептидных цепей.

14. Явление Тиндаля — это...

Варианты ответа:

- а) осаждение белков солями щелочных металлов;
- б) движение ионов в электрическом поле;
- в) конус, образующийся при пропускании светового луча через белковые растворы;
 - г) сорбция-десорбция белков на адсорбенте.

15. Аминокислота, являющаяся оптически неактивной:

Варианты ответа:

- а) валин;
- б) лизин;
- в) глицин;
- г) триптофан.

16. При действии высокой температуры в присутствии соляной кислоты белки подвергаются:

Варианты ответа:

- а) гидролизу;
- б) высаливанию;
- в) диализу;
- г) хроматографии.

17. Изоэлектрическая точка белков — это:

Варианты ответа:

- а) состояние белка, при котором он теряет гидрофильные свойства;
- б) значение рН, при котором белок электронейтрален;
- в) значение рН, при котором белок в электрическом поле движется к аноду;
- г) значение рН, при котором белок в электрическом поле движется к катоду.

18. Процесс освобождения белков от низкомолекулярных соединений — это:

Варианты ответа:

- а) гидролиз;
- б) денатурация;
- в) высаливание;
- г) диализ;
- д) хроматография.

19. Образование гидрофобной связи в белках возможно между:

- а) валином и изолейцином;
- б) аланином и глутаминовой кислотой;

- в) глицином и лейцином;
- г) пролином и аргинином.

20. Между этими аминокислотами в белках возможно образование дисульфидной связи:

Варианты ответа:

- а) цистеин и метионин;
- б) метионин и метионин;
- в) цистеин и цистеин;
- г) цистеин и серин;
- д) серин и триптофан.

21. Действие ферментов заключается в:

Варианты ответа:

- а) достижении оптимальной концентрации субстрата и продукта реакции;
- б) создании оптимального значения рН;
- в) увеличении энергии активации реагирующих веществ;
- г) снижении энергии активации реагирующих веществ.

22. Простетическая группа фермента представляет собой:

Варианты ответа:

- а) альфа-спираль молекулы фермента;
- б) апофермент;
- в) небелковую часть фермента;
- г) холофермент;
- д) аллостерический центр фермента.

23. Ферменты разделяются на 6 классов в соответствии с:

Варианты ответа:

- а) типом катализируемой реакции;
- б) структурой;
- в) субстратной специфичностью;
- г) активностью;
- д) органной специфичностью.

24. Наибольшая активность АлАТ обнаруживается:

Варианты ответа:

- а) в миокарде;
- б) в скелетных мышцах;
- в) в почках;
- г) в крови;
- д) в печени;
- е) в головном мозге.

25. Молекула ЛДГ состоит из субъединиц типа:

- а) МиВ;
- б) М, В и Н;

- в) В и Н;
- г) только В;
- д) НиМ.

26. Катал — это единица, отражающая:

Варианты ответа:

- а) активность фермента;
- б) константу Михаэлиса-Ментен;
- в) концентрацию фермента;
- г) концентрацию ингибитора;
- д) коэффициент молекулярного погашения.

27. Активность фермента, выраженная в каталах, имеет размерность:

Варианты ответа:

- а) моль/мин;
- б) моль/сек;
- в) мкмоль/сек;
- г) мкмоль/мин;
- д) моль/час.

28. Константа Михаэлиса-Ментен — это:

Варианты ответа:

- а) молярный коэффициент экстинкции фермента;
- б) коэффициент, отражающий зависимость скорости реакции от температуры;
- в) концентрация субстрата, при которой достигается максимальная скорость реакции;
- г) концентрация субстрата, при которой скорость ферментативной реакции составляет половину максимальной.

29. Величина константы Михаэлиса-Ментен отражает:

Варианты ответа:

- а) сродство фермента к субстрату;
- б) зависимость скорости реакции от концентрации фермента;
- в) зависимость скорости реакции от температуры;
- г) сродство фермента к ингибитору;
- д) эффекты коферментов и ингибиторов.

30. При инфаркте миокарда повышается преимущественно активность:

Варианты ответа:

- а) креатинкиназы;
- б) холинэстеразы;
- в) альфа-амилазы;
- г) щелочной фосфатазы.

31. При раке предстательной железы преимущественно повышается активность:

- а) альфа-амилазы;
- б) креатинкиназы;

- в) кислой фосфатазы;
- г) ЛДГ-1;
- д) щелочной фосфатазы.

32. Наиболее показательным для диагностики заболеваний костной системы является определение активности:

Варианты ответа:

- а) кислой фосфатазы;
- б) щелочной фосфатазы;
- в) аминотрансфераз;
- г) амилазы;
- д) ЛДГ.

33. Наиболее информативным для диагностики острого панкреатита является определение активности:

Варианты ответа:

- а) альфа-амилазы;
- б) ЛДГ-1;
- в) ЛДГ-5;
- г) AcAT;
- д) АлАТ.

34. Активность ЛДГ при увеличении температуры с 30 до 40 градусов Цельсия:

Варианты ответа:

- а) не изменится;
- б) станет равной нулю;
- в) уменьшится в 2-4 раза;
- г) увеличится в 2–,4 раза;
- д) возрастет в 10 раз.

35. Активность AcAT при постепенном изменении температуры с 30 до 70 градусов по Цельсию:

Варианты ответа:

- а) сначала увеличится, затем резко снизится;
- б) не изменится;
- в) увеличится в среднем в 32 раза;
- г) немедленно упадет до нуля;
- д) будет постепенно нарастать.

36. К мультиэнзимным системам относятся:

- а) изоферменты ЛДГ;
- б) альфа-кетоглутаратдегидрогеназный комплекс;
- в) изоферменты креатинфосфокиназы;
- г) малатдегидрогеназа.

37. Класс фермента, катализирующего реакцию HOOC-CH₂-CH₂-COOH + ФАД <---> HOOC-CH=CH-COOH + ФАДН₂:

Варианты ответа:

- а) трансферазы;
- б) лиазы;
- в) гидролазы;
- г) лигазы;
- д) изомеразы;
- е) оксидоредуктазы.

38. Химотрипсин имеет оптимум рН в диапазоне:

Варианты ответа:

- a) 1–2;
- б) 6-8;
- в) 8–9;
- г) 10–11.

39. Пепсин обладает специфичностью:

Варианты ответа:

- а) относительной;
- б) абсолютной;
- в) стерео.

40. Тип реакций, катализируемый ферментами, в состав которых входит производное витамина РР:

Варианты ответа:

- а) декарбоксилирование;
- б) перенос аминогруппы;
- в) перенос карбоксильной группы;
- г) перенос электронов и протонов;
- д) перенос метильной группы.

41. Ксантиноксидаза относится к классу ферментов:

Варианты ответа:

- а) гидролазы;
- б) изомеразы;
- в) лиазы;
- г) лигазы;
- д) оксидоредуктазы;
- е) трансферазы.

42. Взаимодействие, описываемое выражением «как рука к перчатке»:

- а) субстрат + активный центр;
- б) ингибитор + активный центр;
- в) регулятор + аллостерический центр;
- г) якорная площадка + каталитическая площадка.

43. Энергия активации — это:

Варианты ответа:

- а) энергия, необходимая для перевода всех молекул фермента в активированное состояние;
- б) энергия, необходимая для перевода всех молекул субстрата в активированное состояние;
 - в) разница величин энергий субстратов и продуктов реакции;
 - г) общая энергия системы.

44. Для работы пепсина необходим кофермент:

Варианты ответа:

- a) HAД⁺;
- б) ФАД;
- в) КоА;
- г) кофермент не нужен;
- д) ТПФ;

45. При изменении рН от 5,0 до 1,5 активность пепсина

Варианты ответа:

- а) возрастает;
- б) убывает;
- в) не изменяется.

46. Температурный оптимум для большинства ферментов находится в диапазоне:

Варианты ответа:

- а) от 36 до 38 градусов;
- б) от 40 до 44 градусов;
- в) от 30 до 34 градусов;
- г) от 0 до 8 градусов.

47. Функция якорного участка фермента:

Варианты ответа:

- а) превращение субстрата;
- б) связывание субстрата;
- в) временное связывание регулятора с последующим отщеплением;
- г) поддержание конформации активного центра.

48. В смеси трипсин + пепсин при рН 2,0:

- а) пепсин расщепит трипсин;
- б) трипсин расщепит пепсин;
- в) ничего не произойдет;
- г) произойдет взаимное расщепление молекул.

49. В смеси пепсин + трипсин при рН 8,5:

Варианты ответа:

- а) пепсин расщепит трипсин;
- б) ничего не произойдет;
- в) трипсин расщепит пепсин;
- г) произойдет взаимное расщепление молекул.

50. В смеси пепсин + трипсин при рН 7,0:

Варианты ответа:

- а) ничего не произойдет;
- б) трипсин расщепит пепсин;
- в) пепсин расщепит трипсин;
- г) произойдет взаимное расщепление молекул.

51. Термин «индуцированное соответствие» характеризует:

Варианты ответа:

- а) соответствие активного центра и субстрата как «ключ к замку»;
- б) соответствие структур аллостерического регулятора и аллостерического центра фермента;
 - в) соответствие активного и аллостерического центров фермента;
 - г) соответствие активного центра и субстрата как «рука к перчатке».

52. Ферменты ускоряют...

Варианты ответа:

- а) и прямую, и обратную реакции;
- б) преимущественно прямую реакцию;
- в) преимущественно обратную реакцию.

53. При увеличении концентрации субстрата скорость ферментативной реакции...

Варианты ответа:

- а) сначала возрастает, затем падает;
- б) не изменяется;
- в) сначала возрастает, затем стабилизируется на постоянном уровне;
- г) непрерывно возрастает пропорционально концентрации субстрата;
- д) сначала убывает, затем возрастает.

54. При увеличении концентрации фермента скорость ферментативной реакции...

- а) не изменяется;
- б) сначала растет, затем остается на одном уровне;
- в) сначала возрастает, затем падает;
- г) сначала убывает, затем возрастает;
- д) непрерывно возрастает пропорционально концентрации фермента.

55. Единицы выражения константы Михаэлиса:

Варианты ответа:

- а) ед/моль;
- б) ед/л;
- в) л/сек;
- г) моль/л;
- д) кат/кг.

56. При концентрации субстрата равной Кт скорость ферментативной реакции...

Варианты ответа:

- а) прямо пропорциональна концентрации субстрата;
- б) равна половине максимальной;
- в) обратно пропорциональна концентрации субстрата;
- г) приближается к нулю;
- д) равна максимальной скорости.

57. Параметр, описывающий прочность фермент-субстратного комплекса:

Варианты ответа:

- a) Km;
- б) Vmax;
- в) [S];
- г) [E];
- д) Vобр.

58. Фермент катализирующий реакцию

CH_3 -CO-COOH + HAДH + H^+ <---> CH_3 -CHOH-COOH + $HAД^+$:

Варианты ответа:

- а) пируватдегидрогеназа;
- б) пепсин;
- в) сукцинатдегидрогеназа;
- г) малатдегидрогеназа;
- д) уреаза;
- е) лактатдегидрогеназа.

59. Фермент, катализирующий реакцию

CH_3 -CHOH-COOH + $HAД^+$ <---> CH_3 -CO-COOH + $HAДH + H^+$:

- а) пируватдегидрогеназа;
- б) пепсин;
- в) сукцинатдегидрогеназа;
- г) лактатдегидрогеназа;
- д) малатдегидрогеназа;
- e) ypeasa.

60. Конкурентный ингибитор сукцинатдегидрогеназы:

Варианты ответа:

- a) HOOC-CH₂-CH₂-COOH;
- б) HOOC-CH₂-COOH;
- B) HOOC-CO-CH₃;
- г) HOOC-CH₂-COH;
- д) HOOC-CH₂-CH₃.

61. Механизм действия конкурентного ингибитора:

Варианты ответа:

- а) связывание с аллостерическим центром фермента;
- б) механизм не известен;
- в) денатурация молекулы фермента;
- г) связывание с активным центром фермента;
- д) образование прочного фермент-субстратного комплекса.

62. Механизм действия неконкурентного ингибитора:

Варианты ответа:

- а) связывание с аллостерическим центром фермента;
- б) связывание с активным центром фермента;
- в) механизм не известен;
- г) денатурация молекулы фермента;
- д) образование прочного фермент-субстратного комплекса.

63. Механизм действия неспецифического ингибитора (фактора):

Варианты ответа:

- а) механизм не известен;
- б) связывание с активным центром фермента;
- в) связывание с аллостерическим центром фермента;
- г) образование прочного фермент-субстратного комплекса;
- д) денатурация молекулы фермента.

64. Механизм действия необратимого ингибитора:

- а) образование прочного фермент-субстратного комплекса;
- б) механизм не известен;
- в) связывание с аллостерическим центром фермента;
- г) денатурация молекулы фермента.

РАЗДЕЛ 2

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ

65. Реакция гидролиза глюкозо-1-фосфата ($\Delta G = -20.9 \text{ кДж/моль}$):

Варианты ответа:

- а) экзэргоническая;
- б) эндэргоническая.
- 66. Реакция образования воды из водорода и кислорода не сопровождается взрывом, потому что:

Варианты ответа:

- а) препятствует прочность мембраны митохондрий;
- б) действуют антиоксиданты;
- в) процесс многоступенчатый.
- 67. Если животное находится на малобелковой диете, лишенной витамина РР, то может быть нарушен следующий фермент цепи переноса электронов:

Варианты ответа:

- a) H⁺⁻AТФаза;
- б) НАДН-дегидрогеназа;
- в) сукцинатдегидрогеназа;
- г) цитохромоксидаза.
- 68. Фермент, который осуществляет перенос электронов непосредственно на кислород:

Варианты ответа:

- а) гексокиназа;
- б) супероксиддисмутаза;
- в) пероксидаза;
- г) цитохромоксидаза.
- 69. Компонент цепи переноса электронов и протонов, который собирает электроны от любых субстратов окисления:

Варианты ответа:

- а) НАДН-дегидрогенеза;
- б) цитохром с;
- в) убихинон (KoQ).
- 70. Разобщение дыхания и фосфорилирования достигается при:

- а) повышении проницаемости внутренней мембраны митохондрий для протонов;
 - б) снижении активности Н⁺ зависимой АТФ-азы;
 - в) ингибировании АДФ-АТФ транслоказы.

71. Монооксигеназные системы вводят в субстрат:

Варианты ответа:

- a) SH-группы;
- б) ОН-группы;
- в) СООН-группы;
- г) NH₂-группы.

72. Способность $HA\mathcal{I}^+$ к окислению-восстановлению определяется наличием в его структуре...

Варианты ответа:

- а) аденина;
- б) рибозофосфата;
- в) катиона пиридиния.

73. Транспортирует только электроны:

Варианты ответа:

- а) цитохромоксидаза;
- б) HAД⁺;
- в) ФМН;
- г) убихинон.

74. Макроэргом является:

Варианты ответа:

- а) аденозинмонофосфат;
- б) ФАД;
- в) НАДФ⁺;
- г) креатинфосфат.

75. Атомы и железа, и меди входят в активный центр фермента ...

Варианты ответа:

- а) цитохрома с;
- б) цитохромоксидазы;
- в) НАДН-дегидрогеназы;
- г) убихинолдегидрогеназы;
- д) сукцинатдегидрогеназы.

76. Транспортирует и электроны, и протоны:

Варианты ответа:

- а) цитохром аа₃;
- б) цитохром с;
- в) цитохром b;
- г) ФМН.

77. В дыхательной цепи между убихиноном и цитохромом c_1 расположен:

- а) цитохром с;
- б) цитохром b_5 ;

- в) цитохром b;
- г) цитохром а.

78. Восстановление ФАД (ФМН) сопровождается присоединением протонов:

Варианты ответа:

- а) к атомам азота;
- б) к атомам углерода;
- в) к атомам кислорода.

79. Убихинон легко диффундирует в мембране митохондрий, по-тому что является...

Варианты ответа:

- а) небольшой гидрофильной молекулой;
- б) небольшой липофильной молекулой;
- в) крупной липофильной молекулой;
- г) крупной гидрофильной молекулой.

80. Конечным акцептором электронов в дыхательной цепи является:

Варианты ответа:

- а) водород;
- б) убихинон;
- в) HAД⁺;
- г) цитохромоксидаза;
- д) кислород.

81. При гидролизе макроэргической связи выделяется энергии:

Варианты ответа:

- а) не менее 32 кДж/моль;
- б) 12 кДж/моль;
- в) более 50 кДж/моль;
- г) не менее 23 кДж/моль.

82. Донор электронов в начале дыхательной цепи:

Варианты ответа:

- а) кислород;
- б) сера;
- в) водород;
- г) железо;
- д) медь.

83. Механизм действия НАД включает:

- а) присоединение протона к атому углерода;
- б) присоединение протонов к атомам азота;
- в) присоединение протонов к атому кислорода.

84. Способность ФАД к окислению-восстановлению определяется наличием в его структуре:

Варианты ответа:

- а) рибитола;
- б) изоаллоксазина;
- в) рибозофосфата;
- г) аденинаю.

85. В дыхательной цепи между флавиновыми дегидрогеназами и цитохромом в расположен...

Варианты ответа:

- a) цитохром c_1 ;
- б) цитохром с;
- в) HAД⁺;
- г) убихинон.

86. Продуктом превращения липидов на втором этапе унификации энергетических субстратов является:

Варианты ответа:

- а) глицерофосфат;
- б) глицерин;
- в) пируват;
- г) ацетил-КоА.

87. На этой стадии унификации энергетических субстратов образуется наибольшее количество АТФ:

Варианты ответа:

- а) второй;
- б) первой;
- в) третьей;
- г) на всех поровну.

88. При окислительном декарбоксилировании пирувата образуется:

Варианты ответа:

- а) цитрат;
- б) ацетил-КоА;
- в) сукцинил-КоА;
- г) лактат.

89. Гидратация субстратов в ЦТК происходит в реакции:

- а) фумарат ---> малат;
- б) цитрат ---> цис-аконитат;
- в) малат ---> оксалоацетат;
- г) изоцитрат ---> альфа-кетоглутарат.

90. В состав альфа-кетоглутаратдегидрогеназного комплекса входят:

Варианты ответа:

- а) 3 фермента и 5 коферментов;
- б) 3 фермента и 3 кофермента;
- в) 5 ферментов и 5 коферментов;
- г) 6 ферментов и 3 кофермента.

91. Фермент субстратного фосфорилирования в ЦТК:

Варианты ответа:

- а) изоцитратдегидрогеназа;
- б) сукцинатдегидрогеназа;
- в) малатдегидрогеназа;
- г) цитратсинтаза;
- д) сукцинил-КоА-синтетаза.

92. ЦТК является кислородзависимым процессом, потому что...

Варианты ответа:

- а) кислород необходим для синтеза оксалоацетата;
- б) кислород необходим для регенерации ацетил-КоА;
- в) кислород необходим для регенерации НАД⁺ и ФАД;
- г) кислород активирует цитратсинтетазу.

93. Окислительное превращение происходит в реакции:

Варианты ответа:

- а) малат ---> оксалоацетат;
- б) оксалоацетат ---> цитрат;
- в) фумарат ---> малат.

94. Декарбоксилирование происходит в реакции:

Варианты ответа:

- а) оксалоацетат ---> цитрат;
- б) альфа-кетоглутарат ---> сукцинил-КоА;
- в) фумарат ---> малат;
- г) малат ---> оксалоацетат.

95. Фактором, ингибирующим ЦТК, является:

Варианты ответа:

- а) высокое содержание АТФ;
- б) низкая концентрация НАДН;
- в) высокое содержание АДФ.

96. Столько молекул НАДН может образоваться за один оборот ЦТК:

- а) четыре;
- б) три;
- в) две;
- г) одна;
- д) ни одной.

97. На третьем этапе унификации энергетических субстратов происходит превращение:

Варианты ответа:

- а) полисахариды ---> моносахариды;
- б) пируват ---> ацетил-КоА;
- в) жирные кислоты ---> ацетил-КоА;
- г) ацетил-КоА ---> $H_2O + CO_2$;
- д) глицерин ---> пируват.

98. В ходе ЦТК превращение янтарной кислоты в яблочную происходит через...

Варианты ответа:

- а) фумарат;
- б) цитрат;
- в) оксалоацетат;
- г) сукцинил-КоА.

99. В ходе реакций унификации энергетических субстратов образуется один общий метаболит:

Варианты ответа:

- а) сукцинил-КоА;
- б) ацетил-КоА;
- в) пируват;
- г) изоцитрат;
- д) цитрат.

100. Выбрать правильную последовательность превращения углеводов в ходе унификации энергетических субстратов:

Варианты ответа:

- а) полисахариды --> моносахариды --> ацетил-КоА --> пируват --> Н₂О+СО₂;
- б) полисахариды --> пируват --> моносахариды --> ацетил-КоА --> Н₂О+СО₂;
- в) моносахариды --> полисахариды --> ацетил-КоА --> пируват --> Н₂О+СО₂;
- г) моносахариды --> полисахариды --> пируват --> ацетил-КоА --> Н₂О+СО₂;
- д) полисахариды --> моносахариды --> пируват --> ацетил-КоА --> Н₂О+СО₂.

101. Выбрать метаболиты цикла Кребса:

Варианты ответа:

- а) оксалоацетат, сукцинат;
- б) пируват, лактат;
- в) глюкоза, глицерин.

102. Реакция в ЦТК, катализируемая НАД-зависимым ферментом:

- а) сукцинат ---> фумарат;
- б) оксалоацетат ---> цитрат;
- в) изоцитрат ---> альфа-кетоглутарат.

103. Энергетический выход одного «оборота» ЦТК:

Варианты ответа:

- a) 3 ATΦ;
- б) 6 АТФ;
- в) 9 ATФ;
- r) 12 ATФ;
- д) 15 АТФ.

104. Последовательность расположения ферментов дыхательной цепи определяется их...:

Варианты ответа:

- а) редокс-потенциалом;
- б) липофильностью;
- в) гидрофильностью;
- г) молекулярным весом.

105. Коэффициентом фосфорилирования называется:

Варианты ответа:

- а) отношение количества связанной H_3PO_4 к количеству поглощенного O_2 ;
- б) отношение объемов образующегося СО2 и поглощаемого О2;
- в) отношение количества энергии, аккумулированного АТФ, к энергии, высвободившейся при окислении.

106. Разобщитель окислительного фосфорилирования:

Варианты ответа:

- а) токоферол;
- б) динитрофенол;
- в) цианистый калий;
- г) амитал.

107. Согласно хемиосмотической теории протоны «возвращаются» из межмембранного пространства в матрикс митохондрий:

Варианты ответа:

- а) при помощи ферментов дыхательной цепи;
- б) в любом месте мембраны по градиенту концентрации;
- в) через протонную АТФ-синтетазу.

108. В метаболизме чужеродных соединений участвует фермент:

- а) супероксиддисмутаза;
- б) цитохром b;
- в) цитохром c_1 ;
- г) цитохром P₄₅₀;
- д) сукцинатдегидрогеназа.

109. Реакция, в которой выделяется энергия, достаточная для образования макроэргического соединения:

Варианты ответа:

- а) $HAД^{+} ---> \Phi MH$;
- б) цитохром $c_1 \longrightarrow$ цитохром a;
- в) цитохром b ---> цитохром c_1 .

110. Протонная *АТФ*-синтетаза для образования *АТФ* использует энергию:

Варианты ответа:

- а) трансмембранного протонного градиента;
- б) макроэргической связи промежуточного соединения;
- в) заключенную в НАДФН.

111. Фермент микросомального окисления цитохром P_{450} локализован:

Варианты ответа:

- а) в митохондриях;
- б) в рибосомах;
- в) в лизосомах;
- г) в эндоплазматической сети.

112. Стехиометрический коэффициент Р/О при окислении малата равен:

Варианты ответа:

- а) четырем;
- б) трем;
- в) двум.

113. Фермент, защищающий клетку от токсического действия кислорода:

Варианты ответа:

- а) НАДН-дегидрогеназа;
- б) моноаминооксидаза;
- в) цитохромоксидаза;
- г) супероксиддисмутаза.

114. Ингибитор цитохромоксидазы:

Варианты ответа:

- а) токоферол;
- б) арахидоновая кислота;
- в) тироксин;
- г) лимонная кислота;
- д) цианистый калий.

115. Ингибитор перекисного окисления липидов (ПОЛ):

- а) токоферол;
- б) цианистый калий;

- в) тироксин;
- г) арахидоновая кислота;
- д) пируват.

116. Фермент, взаимодействующий непосредственно с кислородом:

Варианты ответа:

- а) АТФ-синтетаза;
- б) цитохром P_{450} ;
- в) НАДН-дегидрогеназа.

117. Грибовидные образования на внутренней мембране митохондрий это:

Варианты ответа:

- а) фрагмент F₀-субъединицы АТФ-синтетазы;
- б) рибосомы;
- в) комплекс ферментов дыхательной цепи;
- г) фрагмент F₁-субъединицы АТФ-синтетазы.

118. Угарный газ (СО) нарушает биоэнергетические процессы, по-тому что блокирует:

Варианты ответа:

- а) АТФ-синтетазу;
- б) цитохромоксидазу;
- в) цитохром b;
- г) сукцинатдегидрогеназу.

119. Цианиды нарушают биоэнергетические процессы, потому что блокируют:

Варианты ответа:

- а) цитохромоксидазу;
- б) цитохром с;
- в) АТФ-синтетазу;
- г) цитратсинтазу;
- д) сукцинатдегидрогеназу.

120. В активный центр ферментов дыхательной цепи входят атомы:

Варианты ответа:

- а) цинка, иода, селена;
- б) марганца, висмута, хлора;
- в) серы, железа, меди.

121. Разобщители нарушают синтез АТФ, потому что:

- а) блокируют АТФ-синтетазу;
- б) уменьшают трансмембранный потенциал;
- в) ингибируют цитохромоксидазу;
- г) разрушают митохондрии.

РАЗДЕЛ 3

БИОХИМИЯ УГЛЕВОДОВ

122. Функция гепарина:

Варианты ответа:

- а) структурная;
- б) транспорт холестерина;
- в) энергетическая;
- г) антикоагулянт.

123. В состав гиалуроновой кислоты входят:

Варианты ответа:

- а) глюкоза и фруктоза;
- б) глюкуроновая кислота и N-ацетилгалактозамин-6-сульфат;
- в) глюкуроновая кислота и N-ацетилглюкозамин;
- г) галактоза и глюкозамин.

124. При полном гидролизе гликопротеидов образуются:

Варианты ответа:

- а) аминокислоты и аминосахара;
- б) аминосахара и глицерин;
- в) сахароза и рафиноза;
- г) аминокислоты и жирные кислоты;

125. Этот углевод не усваивается организмом, но должен обязательно поступать с пищей:

Варианты ответа:

- а) гликоген;
- б) крахмал;
- в) лактоза;
- г) мальтоза;
- д) целлюлоза.

126. Целлюлоза НЕ выполняет эту функцию:

Варианты ответа:

- а) стимуляция перистальтики кишечника;
- б) образование каловых масс;
- в) адсорбция токсинов в кишечнике;
- г) формирование чувства насыщения;
- д) стимуляция секреции пищеварительных соков;
- е) энергетическую.

127. Биологическая роль пектинов:

- а) связывание токсинов;
- б) пластическая;

- в) энергетическая;
- г) расщепление компонентов пищи.

128. Выбрать макроэргическое соединение:

Варианты ответа:

- а) пируват;
- б) 1,3-дифосфоглицерат;
- в) аденозинмонофосфат;
- г) 2-фосфоглицерат;
- д) глюкозо-6-фосфат.

129. Пируватдегидрогеназный комплекс является мультиэнзимной системой, в его состав входят:

Варианты ответа:

- а) 3 фермента и 5 коферментов;
- б) 5 ферментов и 5 коферментов;
- в) 5 ферментов и 3 кофермента;

130. Функцией пируватдегидрогеназного комплекса является образование:

Варианты ответа:

- а) ЩУК;
- б) пирувата;
- в) ацетил-КоА;
- г) лактата;

131. Окислительное превращение происходит в реакции:

Варианты ответа:

- а) цитрат ---> изоцитрат;
- б) оксалоацетат ---> цитрат;
- в) сукцинат ---> фумарат;
- г) фумарат ---> малат.

Варианты ответа:

- a) 1;
- б) 2;
- в) 3;
- г) 0.

133. Первым этапом на пути окисления пирувата в ацетил-КоА является реакция:

- а) дегидрирования;
- б) переноса ацетила;
- в) гидролиза;

- г) карбоксилирования;
- д) декарбоксилирования.

134. Коферментная форма витамина В1:

Варианты ответа:

- а) пиридоксальфосфат;
- б) флавинаденинмононуклеотид;
- в) тиаминдифосфат;
- г) никотинамидадениндинуклеотидфосфат;
- д) ретиналь.

135. Коферментная форма витамина Н:

Варианты ответа:

- а) пиридоксальфосфат;
- б) N-биотиниллизин;
- в) метилкобаламин;
- г) ретиналь;
- д) тиаминдифосфат.

136. Это вещество определяется в моче при сахарном диабете:

Варианты ответа:

- а) белок;
- б) уробилин;
- в) креатин;
- г) гемоглобин;
- д) билирубин;
- е) глюкоза.

137. Эти вещества определяются в моче при голодании:

Варианты ответа:

- а) белок;
- б) гемоглобин;
- в) уробилин;
- г) билирубин;
- д) глюкоза;
- е) креатин;
- ж) кетоновые тела.

138. Фермент, фосфорилирующий глюкозу:

- а) гексокиназа;
- б) альдолаза;
- в) фосфофруктокиназа;
- г) фосфорилаза;
- д) лактатдегидрогеназа.

139. Через этот метаболит ПВК преобразуется в глюкозу:

Варианты ответа:

- a) HOOC-CHOH-CH₂-COOH;
- б) HOOC-CHOH-CH₃;
- в) CH₃-CO-S-KoA;
- r) HOOC-CO-CH₂-COOH;
- д) CH₃-CO-CH₃.

140. Субстрат глюконеогенеза:

Варианты ответа:

- а) пируват;
- б) этанол;
- в) холестерин;
- г) ацетоацетат;
- д) ацетил-КоА.

141. Метаболит цикла Кори:

Варианты ответа:

- а) этанол;
- б) лактат;
- в) холестерин;
- г) ацетоацетат;
- д) ацетил-КоА.

142. Фермент гликолитической оксидоредукции:

Варианты ответа:

- а) 3-ФГА-дегидрогеназа;
- б) пируваткарбоксилаза;
- в) ФЕП-карбоксикиназа;
- г) глюкозо-6-фосфатаза;
- д) фруктозо-1,6-дифосфатаза;
- е) гексокиназа.

143. Фермент субстратного фосфорилирования в гликолизе:

Варианты ответа:

- а) лактатдегидрогеназа;
- б) гексозофосфатизомераза;
- в) альдолаза;
- г) фосфоглицератмутаза;
- д) пируваткиназа.

144. Активность глюкозо-6-фосфатдегидрогеназы при увеличении отношения $HA\mathcal{I}\Phi^+/HA\mathcal{I}\Phi H$:

- а) уменьшится;
- б) увеличится;
- в) не изменится.

145. Фермент, активность которого угнетается инсулином:

Варианты ответа:

- а) глюкозо-6-фосфатдегидрогеназа;
- б) цитратсинтетаза;
- в) глюкозо-6-фосфатаза;
- г) гексокиназа;
- д) гликогенсинтаза.

146. Фермент, стимулируемый инсулином:

Варианты ответа:

- а) ФЕП-карбоксикиназа;
- б) глюкозо-6-фосфатаза;
- в) фруктозо-1,6-дифосфатаза;
- г) гликогенсинтаза;
- д) гликогенфосфорилаза;
- е) липаза.

147. Механизм патологического действия гипергликемии:

Варианты ответа:

- а) гликозилирование гемоглобина;
- б) разобщение окислительного фосфорилирования;
- в) усиление окисления глюкозы;
- г) угнетение выработки инсулина.

148. Метаболический процесс, который ингибируется при сахарном диабете:

Варианты ответа:

- а) липолиз;
- б) кетогенез;
- в) гликолиз;
- г) глюконеогенез;
- д) орнитиновый цикл.

149. Механизм мобилизации гликогена:

Варианты ответа:

- а) гуанилатциклазный;
- б) инозитольный;
- в) перекисный;
- г) аденилатциклазный.

150. Фермент, который активирует специфическую киназу фосфорилазы:

- а) аденилатциклаза;
- б) гуанилатциклаза;
- в) протеинкиназа;
- г) фосфодиэстераза.

151. Фермент, который катализирует образование цАМФ:

Варианты ответа:

- а) гуанилатциклаза;
- б) аденилатциклаза;
- в) протеинкиназа;
- г) киназа фосфорилазы;
- д) фосфорилаза.

152. Концентрация цАМФ в клетке контролируется ферментом:

Варианты ответа:

- а) гуанилатциклаза;
- б) протеинкиназа;
- в) киназа фосфорилазы;
- г) фосфорилаза;
- д) фосфодиэстераза цАМФ.

153. Гормон, активирующий синтез белков, липидов и углеводов:

Варианты ответа:

- а) инсулин;
- б) пролактин;
- в) адреналин;
- г) глюкагон.

154. Гормон, представляющий собой белок, содержащий 51 амино-кислоту и состоящий из 2-х полипептидных цепей:

Варианты ответа:

- а) глюкагон;
- б) адреналин;
- в) окситоцин;
- г) альдостерон;
- д) инсулин.

155. Влияние глюкагона на углеводный обмен:

Варианты ответа:

- а) стимуляция проникновения глюкозы в ткани;
- б) повышение активности гексокиназы и глюкокиназы;
- в) стимуляция биосинтеза гликогена;
- г) мобилизация гликогена в печени;
- д) стимуляция гликолиза и пентозного цикла.

156. Кофеин, содержащийся в чае, кофе, какао, является ингибитором фосфодиэстеразы, в результате чего происходит:

- а) накопление цАМФ;
- б) уменьшение содержания цАМФ;
- в) снижение скорости метаболизма.

157. Вещество, которое необходимо добавить в схему реакции ЩУК + ---> цитрат + HSKoA:

Варианты ответа:

- а) бета-кетоацил-КоА;
- б) ацетил-КоА;
- в) малонил-КоА;
- г) ацил-КоА;
- д) бутирил-КоА;
- е) еноил-КоА;
- ж) сукцинил-КоА.

158. К кетоновым телам относится:

Варианты ответа:

- а) ацетоацетат;
- б) диоксиацетонфосфат;
- в) оксалоацетат;
- г) гамма-аминобутират.

159. Выбрать правильное утверждение:

Варианты ответа:

- а) глюкоза относится к кетозам;
- б) лактоза является моносахаридом;
- в) фруктоза является пентозой;
- г) сахароза состоит из фруктозы и галактозы;
- д) крахмал содержит альфа-1,4-гликозидные связи.

160. Выбрать правильное утверждение:

Варианты ответа:

- а) гликоген содержит бета-гликозидные связи;
- б) галактоза относится к дисахаридам;
- в) глюкоза является альдозой;
- г) дезоксирибоза это полисахарид;
- д) целлюлоза состоит из остатков глюкозы, связанных альфа-гликозидными связями;
 - е) гепарин является гомополисахаридом.

161. Нуклеотид, который является переносчиком остатков глюкозы в реакции биосинтеза гликогена:

- a) HAД⁺;
- б) ФАД;
- в) УДФ;
- г) АДФ:
- **д)** ГТФ.

162. Фермент, катализирующий реакцию

$(C_6H_{10}O_5)_n + \Phi_n \longrightarrow (C_6H_{10}O_5)_{n-1} +$ глюкозо-1-фосфат:

Варианты ответа:

- а) фосфорилаза;
- б) амилаза;
- в) гексокиназа;
- г) фосфоглюкомутаза;
- д) глюкозо-6-фосфатаза;
- е) гликогенсинтаза.

163. Фермент, катализирующий реакцию глюкозо-6-фосфат <---> глюкозо-1-фосфат:

Варианты ответа:

- а) гексозофосфатизомераза;
- б) фосфоглюкомутаза;
- в) глюкозо-6-фосфатаза;
- г) гексокиназа;
- д) альдолаза.

164. В мышцах глюкозо-6-фосфат не превращается в глюкозу, по-тому что в них отсутствует этот фермент:

Варианты ответа:

- а) глюкокиназа;
- б) гексокиназа;
- в) альдолаза;
- г) глюкозо-6-фосфатаза;
- д) фосфоглюкомутаза.

165. Фермент, катализирующий реакцию глюкозо-6-фосфат <---> фруктозо-6-фосфат:

Варианты ответа:

- а) фосфоглюкомутаза;
- б) фосфофруктокиназа;
- в) фосфорилаза;
- г) фосфатаза;
- д) гексозофосфатизомераза.

166. Фермент, недостаточность которого вызывает галактоземию:

- а) галактозо-1-фосфат-уридилтрансфераза;
- б) кетогексокиназа;
- в) эпимераза УДФ-галактозы;
- г) галактозо-1-фосфатаза.

167. Реакция, которую катализирует гликогенсинтаза:

Варианты ответа:

- а) ($C_6 H_{10} O_5$)_n + УДФ-глюкоза ---> ($C_6 H_{10} O_5$)_{n+1} + УДФ;
- б) $(C_6 H_{10} O_5)_n + H_2 O \longrightarrow (C_6 H_{10} O_5)_{n-2} + Maльтоза;$
- в) $(C_6 H_{10} O_5)_n + H_3 PO_4 ---> (C_6 H_{10} O_5)_{n-1} + глюкозо-1-фосфат;$
- г) ($C_6 H_{10} O_5$)_n + $H_2 O$ ---> ($C_6 H_{10} O_5$)_{n-1} + глюкоза;
- д) $C_6 H_{12} O_6 + AT\Phi \longrightarrow C_6 H_{11} O_6 PO_3 H_2 + AДФ.$

168. Реакция, которую катализирует гексокиназа (глюкокиназа): Варианты ответа:

- а) $(C_6 H_{10} O_5)_n + УД\Phi$ -глюкоза ---> $(C_6 H_{10} O_5)_{n+1} + УД\Phi$;
- б) $C_6 H_{12} O_6 + AT\Phi \longrightarrow C_6 H_{11} O_6 PO_3 H_2 + AД\Phi$;
- в) ($C_6 H_{10} O_5$)_n + $H_2 O$ ---> ($C_6 H_{10} O_5$)_{n-1} + глюкоза;
- Γ) ($C_6 H_{10} O_5$)_n + $H_2 O$ ---> ($C_6 H_{10} O_5$)_{n-2} + мальтоза;
- д) $(C_6 H_{10} O_5)_n + H_3 PO_4 ---> (C_6 H_{10} O_5)_{n-1} + глюкозо-1-фосфат.$

169. Реакция, которую катализирует гликогенфосфорилаза:

Варианты ответа:

- а) $(C_6 H_{10} O_5)_n + H_2 O \longrightarrow (C_6 H_{10} O_5)_{n-1} +$ глюкоза;
- б) $(C_6 H_{10} O_5)_n + H_2 O \longrightarrow (C_6 H_{10} O_5)_{n-2} + мальтоза;$
- в) $(C_6 H_{10} O_5)_n + УДФ$ -глюкоза ---> $(C_6 H_{10} O_5)_{n+1} + УДФ$;
- г) $(C_6 H_{10} O_5)_n + H_3 PO_4 \longrightarrow (C_6 H_{10} O_5)_{n-1} + глюкозо-1-фосфат.$

170. Гликоген — это:

Варианты ответа:

- а) неразветвленный полисахарид, состоящий из остатков глюкозы, связанных альфа-1,6-гликозидной связью;
- б) линейный полисахарид, состоящий из остатков глюкозы, связанных альфа-1,4-гликозидной связью;
- в) разветвленный полисахарид, состоящий из остатков глюкозы, связанных альфа-1,4-и альфа-1,6-гликозидной связью;
- г) линейный полисахарид, состоящий из остатков глюкозы, связанных бета-1,4-гликозидной связью.

171. При дефиците этого фермента развивается болезнь Гирке:

Варианты ответа:

- а) фосфорилазы мышц;
- б) амило-1,6-глюкозидазы;
- в) галактозо-1-фосфат-уридилтрансферазы;
- г) кислой альфа-глюкозидазы;
- д) глюкозо-6-фосфатазы.

172. При дефиците этого фермента развивается агликогеноз:

- а) глюкозо-6-фосфатазы;
- б) гликогенсинтетазы;

- в) фосфорилазы мышц;
- г) амило-1,6-глюкозидазы;
- д) галактозо-1-фосфат-уридилтрансферазы;
- е) кислой альфа-глюкозидазы.

173. При дефиците этого фермента развивается болезнь Кори (Форбса): Варианты ответа:

- а) глюкозо-6-фосфатазы;
- б) фосфорилазы мышц;
- в) гликогенсинтетазы;
- г) галактозо-1-фосфат-уридилтрансферазы;
- д) кислой альфа-глюкозидазы;
- е) амило-1,6-глюкозидазы.

174. При дефиците этого фермента развивается болезнь Мак-Ардля:

Варианты ответа:

- а) гликогенсинтетазы;
- б) глюкозо-6-фосфатазы;
- в) амило-1,6-глюкозидазы;
- г) галактозо-1-фосфат-уридилтрансферазы;
- д) кислой альфа-глюкозидазы;
- е) фосфорилазы мышц.

175. Гормон, который вызывает гипогликемию:

Варианты ответа:

- а) кортизол;
- б) тироксин;
- в) инсулин;
- г) глюкагон;
- д) соматотропин;
- е) тестостерон.

176. Количество *ATФ*, образующееся при полном окислении одной молекулы глюкозы:

Варианты ответа:

- a) 15;
- 6)24;
- в) 30;
- г) 37;
- д) 38.

177. Реакция, катализируемая фосфофруктокиназой:

- а) фруктозо-6-фосфат + $AT\Phi$ ---> фруктозо-1,6-дифосфат + $AД\Phi$;
- б) фосфоенолпируват + АДФ ---> пируват + АТФ;
- в) фруктозо-1,6-дифосфат <---> 3- Φ ГА + Φ ДА;

- г) пируват <---> лактат;
- д) 2-фосфоглицерат <---> 3-фосфоглицерат.

178. Выбрать реакцию субстратного фосфорилирования:

Варианты ответа:

- а) 3-фосфоглицерат <---> 2-фосфоглицерат;
- б) фосфоенолпируват + $AД\Phi$ ---> пируват + $AT\Phi$;
- в) глюкозо-6-фосфат + H_2O ---> глюкоза + H_3PO_4 ;
- г) оксалоацетат + $\Gamma T \Phi$ ---> фосфоенолпируват + CO_2 + $\Gamma \Pi \Phi$;
- д) 6-фосфоглюконат + $HAД\Phi^+$ ---> рибулозо-5-фосфат + $HAД\Phi H + H^+ + CO_2$.

179. Ткань, где наиболее активно протекает глюконеогенез:

Варианты ответа:

- а) печень;
- б) жировая ткань;
- в) молочная железа;
- г) скелетные мышцы;
- д) головной мозг;
- е) эритроциты.

180. Эффект Пастера — это:

Варианты ответа:

- а) торможение тканевого дыхания гликолизом;
- б) торможение превращения пирувата в лактат;
- в) стимуляция гликолиза высокой концентрацией АДФ;
- г) торможение гликолиза тканевым дыханием.

181. После переваривания пирога, который содержит муку, молоко, и сахарозу как первичные компоненты, главные углеводы, входящие в кровь:

- а) глюкоза;
- б) фруктоза и галактоза;
- в) галактоза и глюкоза;
- г) фруктоза и глюкоза;
- д) глюкоза, фруктоза и галактоза.

РАЗДЕЛ 4

БИОХИМИЯ ЛИПИДОВ

182. Структура, соответствующая холевой кислоте:

Варианты ответа:

- а) 3,7,12-триоксихолановая кислота;
- б) 3,7-диоксихолановая кислота;
- в) 3,12-диоксихолановая кислота;
- г) 3-оксихолановая кислота.

183. Транспортная форма экзогенных триглицеридов:

Варианты ответа:

- а) хиломикроны;
- б) ЛПОНП;
- в) ЛПНП;
- г) ЛПВП;
- д) альбумины.

184. Транспортная форма эндогенных триглицеридов:

Варианты ответа:

- а) хиломикроны;
- б) ЛПОНП;
- в) ЛПНП;
- г) ЛПВП:
- д) альбумины.

185. Транспортная форма холестерина из печени в периферические клетки:

Варианты ответа:

- а) хиломикроны;
- б) ЛПНП;
- в) ЛПВП;
- г) альбумины.

186. Транспортная форма холестерина из периферических клеток в печень:

Варианты ответа:

- а) хиломикроны;
- б) ЛПОНП;
- в) ЛПНП;
- г) ЛПВП;
- д) альбумины.

187. Свободные жирные кислоты в крови связываются:

- а) с хиломикронами;
- б) с ЛПОНП;

- в) с ЛПВП;
- г) с ЛПНП;
- д) с альбуминами.

188. Функция желчных кислот:

Варианты ответа:

- а) эмульгирование липидов;
- б) активация пепсина;
- в) всасывание холестерина;
- г) всасывание короткоцепочечных жирных кислот;
- д) всасывание глицерина.

189. Фермент катаболизма ЛПОНП:

Варианты ответа:

- а) панкреатическая липаза;
- б) кишечная липаза;
- в) фосфолипаза;
- г) липопротеидлипаза;
- д) триглицеридлипаза.

190. Какое вещество необходимо добавить в схему реакции ацетил-Ко $A + CO_2 + AT\Phi$ ---> $A\mathcal{I}\Phi + \Phi_{\scriptscriptstyle H} + \dots$:

Варианты ответа:

- а) ацил-КоА;
- б) ацетил-КоА;
- в) малонил-КоА;
- г) бутирил-КоА.

191. Какое вещество необходимо добавить в схему реакции ацил-Ко $A + \Phi A \mathcal{I}$ ---> + $\Phi A \mathcal{I} H_2$:

Варианты ответа:

- а) еноил-КоА;
- б) малонил-КоА;
- в) цитрат;
- г) бета-оксиацил-КоА;
- д) ацетил-КоА;
- е) бутирил-КоА.

192. Какое вещество необходимо добавить в схему реакции бета-оксиацил-Ко $A + HA\mathcal{I}^+$ ---> + $HA\mathcal{I}H + H^+$:

- а) малонил-КоА;
- б) ацил-КоА;
- в) бета-кетоацил-КоА;
- г) ацетил-КоА;

- д) бутирил-КоА;
- е) еноил-КоА;
- ж) сукцинил-КоА.

193. Какое вещество необходимо добавить в схему реакции R-CO-CH2-CO-SKoA + KoASH ---> R-CO-SKoA +:

Варианты ответа:

- а) бета-кетоацил-КоА;
- б) малонил-КоА;
- в) ацил-КоА;
- г) бутирил-КоА;
- д) еноил-КоА;
- е) сукцинил-КоА;
- ж) ацетил-КоА.

194. Антиатерогенный липопротеид:

Варианты ответа:

- а) ЛПВП;
- б) ЛПНП;
- в) ЛПОНП;
- г) хиломикрон.

195. ЛПНП образуется из:

Варианты ответа:

- а) ЛПОВП;
- б) ЛПВП;
- в) ЛПОНП;
- г) хиломикронов.

196. Путь преимущественного распада высших жирных кислот в организме:

Варианты ответа:

- а) бета-окисление;
- б) альфа-окисление;
- в) декарбоксилирование;
- г) омега-окисление;
- д) восстановление.

197. Фермент, катализирующий реакцию CH3-CO-SKo $A + CO_2 + AT\Phi$ ---> HOOC-CH $_2$ -CO-SKo $A + A\mathcal{I}\Phi + \Phi_{_H}$:

- а) гидроксиметилглутарил-КоА-редуктаза;
- б) тиолаза;
- в) тиокиназа;
- г) ацетил-КоА-карбоксилаза;
- д) холестеролэстераза;
- е) ЛХАТ.

198. Фермент, катализирующий реакцию R- $COOH + AT\Phi + HSKoA$ ---> R-CO- $SKoA + AM\Phi + PP_i$:

Варианты ответа:

- а) тиолаза;
- б) ацил-КоА-синтетаза;
- в) ЛХАТ;
- г) ацетил-КоА-карбоксилаза;
- д) гидроксиметилглутарил-КоА-редуктаза;
- е) холестеролэстераза.

199. Фермент, катализирующий реакцию CH₃-CO-CH₂-COSKoA + CH₃-CO-SKoA ----> бета-гидрокси-бета-метил-глутарил-SKoA:

Варианты ответа:

- а) тиокиназа;
- б) тиолаза;
- в) ацетил-КоА-карбоксилаза;
- г) гидроксиметилглутарил-КоА-редуктаза;
- д) ГМГ-КоА-синтаза;
- е) холестеролэстераза.

200. Фермент, катализирующий реакцию Глицерин + ATФ ---> альфа-глицерофосфат + AДФ:

Варианты ответа:

- а) глицерол-3-фосфатдегидрогеназа;
- б) глицеральдегидфосфатдегидрогеназа;
- в) глицеролкиназа;
- г) фосфоглицераткиназа;
- д) фосфоглицератмутаза.

201. Фермент, катализирующий реакцию: альфа-глицерофосфат $+NAD^{+}$ ---> $\Phi \mathcal{L}A + NADH + H^{+}$:

Варианты ответа:

- а) глицеральдегидфосфатдегидрогеназа;
- б) фосфоглицераткиназа;
- в) фосфоглицератмутаза;
- г) глицеролкиназа;
- д) глицерол-3-фосфатдегидрогеназа.

202. Энергетический эффект полного окисления глицерина:

- a) 2 ATΦ;
- б) 3 ATФ;
- в) 12 ATФ;
- г) 15 ATФ;
- д) 22 АТФ;
- е) 36 АТФ.

203. Промежуточный продукт синтеза кетоновых тел:

Варианты ответа:

- а) малонил-КоА;
- б) сукцинил-КоА;
- в) бета-гидрокси-бета-метилглутарил-КоА;
- г) ацетоацетат;
- д) бета-оксибутират.

204. Ключевой метаболит липидного обмена:

Варианты ответа:

- а) ацетил-КоА;
- б) ацетоацетил-КоА;
- в) бета-гидрокси-бета-метилглутарил-КоА;
- г) малонил-КоА;
- д) сукцинил-КоА;
- е) ацетоацетат;
- ж) бета-оксибутират.

205. Биологическая роль кетоновых тел:

Варианты ответа:

- а) пластический материал;
- б) источник энергии;
- в) структурный компонент клетки;
- г) транспорт холестерина.

206. Низкомолекулярное азотистое соединение, принимающее участие в переносе жирных кислот через мембрану митохондрий:

Варианты ответа:

- а) креатин;
- б) карнозин;
- в) серин;
- г) карнитин;
- д) биотин;
- е) холин.

207. Формула какого соединения представлена

$(CH_3)_3N+-CH_2-(OH)CH-CH_2-COOH$:

- а) ацилкарнитина;
- б) этаноламина;
- в) карнозина;
- г) серина;
- д) биотина;
- е) карнитина;
- ж) холина.

208. Низкомолекулярное азотистое соединение, препятствующее жировой инфильтрации печени:

Варианты ответа:

- а) карнитин;
- б) холин;
- в) креатин;
- г) карнозин;
- д) биотин.

209. Первая реакция на пути метаболических превращений глицерина:

Варианты ответа:

- а) восстановление;
- б) окисление;
- в) ацилирование;
- г) фосфорилирование;
- д) метилирование.

210. В реакциях синтеза сложных липидов используется:

Варианты ответа:

- а) ЦТФ;
- б) ГТФ;
- в) УТФ;
- г) ТТФ.

211. Общий промежуточный метаболит при синтезе нейтрального жира и фосфолипидов:

Варианты ответа:

- а) диацилглицерин;
- б) 1,3-дифосфоглицериновая кислота;
- в) мевалоновая кислота;
- г) фосфатидная кислота.

212. Кофермент — поставщик водорода для биосинтеза жирных кислот и холестерина:

Варианты ответа:

- a) NADH;
- б) FADH₂;
- в) NADPH;
- г) глутатион-SH;
- д) FMNH₂.

213. Малонил-КоА синтезируется из:

- a) ATФ;
- б) ЦТФ;
- в) ацетил-КоА;

- г) серина;
- д) холина;
- е) фосфатидной кислоты.

214. Количество циклов при бета-окислении жирной кислоты с 20 углеродными атомами:

Варианты ответа:

- a) 8;
- б) 9;
- в) 10;
- r) 11;
- д) 12;
- e) 20.

215. Количество циклов при бета-окислении жирной кислоты с 16 углеродными атомами:

Варианты ответа:

- a) 7;
- б) 8;
- в) 10;
- r) 11;
- д) 12;
- e) 16.

216. Фермент, катализирующий реакцию

H_2N - CH_2 - CH_2 -OH + $AT\Phi$ ---> H_2N - CH_2 - CH_2 -O- PO_3H_2 + $A\mathcal{A}\Phi$:

Варианты ответа:

- а) холинкиназа;
- б) глицеролкиназа;
- в) этаноламинкиназа.

217. Заболевание, которое может развиться при нарушении обмена холестерина:

Варианты ответа:

- а) мочекаменная болезнь;
- б) сахарный диабет;
- в) жировая инфильтрация печени;
- г) атеросклероз.

218. Фермент, катализирующий реакцию

Фосфатидная кислота $+ H_2O --> Диацилглицерол + H_3PO_4$:

- а) глицеролкиназа;
- б) фосфоенолпируваткарбоксикиназа;
- в) липопротеидлипаза;

- г) лецитинхолестеринацилтрансфераза;
- д) фосфолипаза;
- е) триглицеридлипаза;
- ж) фосфатидатфосфатаза.

219. Антилиполитический гормон:

Варианты ответа:

- а) тироксин;
- б) инсулин;
- в) тестостерон;
- г) адреналин;
- д) липотропин;
- е) глюкагон;
- ж) кортизол.

220. Суточный пул какого холестерина преобладает:

Варианты ответа:

- а) эндогенного;
- б) экзогенного;
- в) они равны.

221. Мутность сыворотки крови после приема пищи обычно обусловлена наличием:

Варианты ответа:

- а) жирных кислот;
- б) желчных кислот;
- в) простагландинов;
- г) холестерина;
- д) триглицеридов;
- е) фосфолипидов.

222. Всасывание липидов происходит преимущественно в:

Варианты ответа:

- а) 12-перстной кишке;
- б) тонкой кишке;
- в) полости рта;
- г) желудке;
- д) толстой кишке.

223. Кетоз является состоянием при котором в крови повышен уровень:

- а) лактата;
- б) ацетоацетил-КоА;
- в) ацетоацетата;
- г) ацетил-КоА.

224. Ацетил-КоА карбоксилаза ингибируется:

Варианты ответа:

- а) цитратом;
- б) карнитином;
- в) лактальбумином;
- г) цианидом;
- д) авидином;
- e) NADH.

225. Апо В-100 является маркером:

Варианты ответа:

- a) XM;
- б) ЛПНП;
- в) ЛПВП;
- г) ЛПОВП.

226. Апо В-48 является маркером:

- a) XM;
- б) ЛПОНП;
- в) ЛППП;
- г) ЛПНП;
- д) ЛПВП.

РАЗДЕЛ 5

БИОХИМИЯ БЕЛКОВ И НУКЛЕИНОВЫХ КИСЛОТ

227. Фермент расщепления белков в желудке:

Варианты ответа:

- а) пепсиноген;
- б) трипсин;
- в) энтерокиназа;
- г) пепсин.

228. Фермент, который расщепляет белки до полипептидов в кишечнике:

Варианты ответа:

- а) трипсиноген;
- б) трипсин;
- в) карбоксипептидаза;
- г) химотрипсиноген.

229. Фермент, который отщепляет С-концевые аминокислоты в белках: Варианты ответа:

- а) карбоксипептидаза;
- б) аминопептидаза;
- в) химотрипсин.

230. Тип дезаминирования аминокислот, характерный для млекопитающих:

Варианты ответа:

- а) внутримолекулярный;
- б) гидролитический;
- в) восстановительный;
- г) окислительный.

231. Аминокислота, которая подвергается наиболее интенсивному окислительному дезаминированию:

Варианты ответа:

- а) лейцин;
- б) валин;
- в) серин;
- г) глутамат;
- д) аспартат.

232. Амин, который образуется при декарбоксилировании гистидина: Варианты ответа:

- а) тирамин;
- б) кадаверин;

- в) гистамин;
- г) путресцин.

233. Амин, который образуется при декарбоксилировании тирозина: Варианты ответа:

- а) тирамин;
- б) гистамин;
- в) кадаверин;
- г) путресцин.

234. Амин, который образуется при декарбоксилировании лизина: Варианты ответа:

- а) гистамин;
- б) тирамин;
- в) кадаверин;
- г) путресцин.

235. Амин, который образуется при декарбоксилировании орнитина: Варианты ответа:

- а) гистамин;
- б) тирамин;
- в) кадаверин;
- г) путресцин.

236. Норма белка в пище для взрослого человека с энергозатратами 12000 кДж/сут составляет:

Варианты ответа:

- a) 40-50 r/cyt;
- б) 50–100 г/сут;
- в) 100–120 г/сут;
- $_{\Gamma}$) >120 $_{\Gamma}$ /cy $_{\rm T}$.

237. Протеолиз белков не повышает:

Варианты ответа:

- а) кортизол;
- б) повышенная секреция тиреоидных гормонов;
- в) активация лизосом;
- г) инсулин.

238. При трансаминировании между альфа-кетоглутаратом и аланином образуются:

- а) глутамат и пируват;
- б) аспартат и лактат;
- в) глутамат и лактат;
- г) глутамин и аспарагин.

239. Коферментом трансаминазы является:

Варианты ответа:

- а) пиродоксальфосфат;
- б) пиридоксаминфосфат;
- в) тиамин;
- г) тиаминфосфат.

240. При декарбоксилировании этой аминокислоты образуется бета-аланин:

Варианты ответа:

- а) валин;
- б) лейцин;
- в) глутамат;
- г) аспартат.

241. Аминокислота, которая является промежуточным продуктом при биосинтезе мочевины и расщепляется с образованием орнитина и мочевины:

Варианты ответа:

- а) аргинин;
- б) валин;
- в) лейцин;
- г) цитруллин.

242. Главный конечный продукт азотистого обмена у млекопитающих:

Варианты ответа:

- а) аммиак;
- б) мочевина;
- в) мочевая кислота.

243. Реакция трансаминирования является одной из стадий биосинтеза:

Варианты ответа:

- а) подавляющего большинства аминокислот;
- б) дикарбоновых кислот;
- в) заменимых аминокислот.

244. Наиболее важный фермент, участвующий в образовании аммиака из аминокислот у человека:

- а) глутаматдегидрогеназа;
- б) глутаминсинтетаза;
- в) сериндегидратаза;
- г) L-аминооксидаза;
- д) аргиназа.

245. Оксалоацетат образуется при трансаминировании:

Варианты ответа:

- а) валина;
- б) лейцина;
- в) аспартата;
- г) глутамата.

246. В процессе превращения триптофана образуется:

Варианты ответа:

- а) гистамин;
- б) кортикостерон;
- в) тироксин;
- г) серотонин.

247. Гамма-амино-бутират образуется при декарбоксилировании:

Варианты ответа:

- а) глутамата;
- б) треонина;
- в) лейцина;
- г) аспартата.

248. При окислении фенилаланина образуется:

Варианты ответа:

- а) серин;
- б) тирозин;
- в) триптофан;
- г) аланин.

249. Реакция, которая НЕ сопровождается связыванием аммиака:

Варианты ответа:

- а) синтез аргинина из аргининосукцината;
- б) карбамоилфосфатсинтетазная;
- в) синтез глутамина из глутамата;
- г) синтез глутамата из альфа-кетоглутарата.

250. Атомы азота в молекуле мочевины происходят из:

Варианты ответа:

- а) глутамина и аспарагиновой кислоты;
- б) глутаминовой кислоты и аланина;
- в) аммиака и глутамата;
- г) аммиака и аспарагиновой кислоты.

251. Синтез аммонийных солей происходит:

- а) в мышцах;
- б) в головном мозге;
- в) в почках;
- г) в печени.

252. Количество пар оснований, приходящихся на один виток двойной спирали ДНК в В-форме:

Варианты ответа:

- a) 5;
- б) 10;
- в) 15;
- г) 20;
- д) 100.

253. Связи между нуклеотидами в цепи нуклеиновых кислот:

Варианты ответа:

- а) 3',5'-фосфодиэфирные;
- б) пирофосфатные;
- в) водородные;
- г) координационные;
- д) ионные.

254. При катаболизме пиримидиновых оснований у человека образуются:

Варианты ответа:

- а) мочевина;
- б) пиримидин;
- в) бета-аминокислоты.

255. Углевод, входящий в состав РНК:

Варианты ответа:

- а) альфа-D-рамноза;
- б) альфа-D-фруктофураноза;
- в) альфа-D-2-дезоксирибофураноза;
- г) альфа-D-галактопираноза;
- д) альфа-D-рибопираноза;
- е) альфа-D-рибофураноза.

256. Является нуклеозидом:

Варианты ответа:

- а) аденинрибонуклеозидмонофосфат;
- б) цАМФ;
- в) цитидин.

257. Характерно для вторичной структуры ДНК в В-форме:

- а) шаг спирали равен 3,4 нм;
- б) внешний диаметр двойной спирали 5 нм;
- в) расстояние между основаниями, лежащими друг против друга, равно 3–5 нм;
 - г) комплементарные цепи параллельны.

258. Комплекс ДНК с белком:

Варианты ответа:

- а) миозин;
- б) хроматин;
- в) рибосомы;
- г) ДНП в цитоплазме.

259. Нуклеиновые кислоты имеют абсорбционный максимум в области 240–270 нм из-за наличия:

Варианты ответа:

- а) фосфодиэфирной связи;
- б) водородной связи;
- в) рибозы;
- г) фосфорной кислоты;
- д) гетероциклических соединений.

260. Причина образования фрагментов Оказаки:

Варианты ответа:

- а) несовпадение направления синтеза дочерней цепи ДНК и направления движения репликативной вилки;
 - б) неполное обеспечение процесса репликации субстратами;
 - в) несовпадение Кт ферментов стадии элонгации репликации ДНК.

261. В лидирующей цепи реплицирующейся ДНК:

Варианты ответа:

- а) направление удлинения совпадает с направлением расплетения ДНК;
- б) направление удлинения противоположно направлению расплетения ДНК;
- в) образуются фрагменты Оказаки.

262. Отстающая цепь реплицирующейся ДНК:

Варианты ответа:

- а) цепь, удлиняющаяся ферментами с большей Кт;
- б) цепь, на которую действуют ингибиторы репликации;
- в) цепь, удлинение которой осуществляется фрагментами Оказаки.

263. В этом периоде клеточного цикла происходит репликация ядерной ДНК:

Варианты ответа:

- a) G_1 ;
- б) S;
- \mathbf{B}) \mathbf{G}_2 ;
- г) M.

264. Обратная транскриптаза:

- а) дезоксирибонуклеаза;
- б) ДНК-зависимая РНК-полимераза;

- в) НАД-зависимая ДНК-полимераза;
- г) пептидилтрансфераза;
- д) РНК-зависимая ДНК-полимераза.

265. С дефектом этого фермента связан синдром Леша-Нихана:

Варианты ответа:

- а) ксантиноксидаза;
- б) гипоксантин-гуанин-фосфорибозилтрансфераза;
- в) нуклеозидфофорилаза;
- г) гуаниндезаминаза.

266. Патология этого фермента приводит к развитию ксантинурии и образованию ксантиновых камней в почках:

Варианты ответа:

- а) ксантиноксидаза;
- б) нуклеозидфофорилаза;
- в) гуаниндезаминаза;
- г) гипоксантин-гуанин-фосфорибозилтрансфераза.

267. Подагра развивается вследствие дефекта фермента:

Варианты ответа:

- а) ксантиноксидазы;
- б) нуклеозидфофорилазы;
- в) фосфорибозилпирофосфат-синтетазы.

268. Связь, которая образуется при переносе аминокслоты с аминоациладенилата на концевой остаток аденозина молекулы тРНК:

Варианты ответа:

- а) дисульфидная
- б) водородная
- в) эфирная
- г) сложноэфирная
- д) пептидная

269. Образование аминоацил-тРНК — реакция ...:

Варианты ответа:

- а) тРНК с аминоациладенилатами;
- б) тРНК с аминоацилфосфатами;
- в) тРНК с аминоацил-КоА.

270. Фермент, ингибируемый антибиотиком актиномицином D:

- а) ревертаза;
- б) полинуклеотидфосфорилаза;
- в) РНК-репликаза;
- г) ДНК-зависимая РНК-полимераза.

271. Компоненты и факторы, необходимые для терминации трансляции: Варианты ответа:

- а) ГТФ, факторы терминации (RF-1, RF-2, RF-3);
- б) ГТФ, терминирующий кодон мРНК, факторы терминации (RF-1, RF-2, RF-3);
- в) факторы терминации (RF-1, RF-2, RF-3), Mg²⁺, мРНК.

272. Механизм ингибирующего действия актиномицина D:

Варианты ответа:

- а) связывание ДНК-полимеразы с матрицей;
- б) взаимодействие с остатком дезоксигуанозина в ДНК;
- в) влияние на участок инициации биосинтеза нуклеиновых кислот;
- г) связывание с активным центром ДНК-полимеразы.

273. Пуромицин ингибирует:

Варианты ответа:

- а) трансляцию;
- б) РНК-полимеразу;
- в) ДНК полимеразу и процесс репликации.

274. Антибиотики стрептомицин и тетрациклин ингибируют биосинтез белка, так как связываются с:

Варианты ответа:

- а) участками молекулы ДНК;
- б) молекулой тРНК;
- в) малой субъединицей рибосом.

275. В моче повышено содержание аммонийных солей. Состояние кислотно-основного баланса:

- а) алкалоз;
- б) ацидоз;
- в) нет зависимости.

РАЗДЕЛ 6

БИОХИМИЯ ВИТАМИНОВ И ГОРМОНОВ

276. Витамин, наиболее широко применяющийся в комплексной терапии невритов и полиневритов:

- a) B_1 ;
- δ) B_6 ;
- в) C;
- г) К.

277. Свойство тестостерона:

Варианты ответа:

- а) оказывает действие, связываясь с рецепторами на поверхности клеток;
- б) происходит из эстрадиола;
- в) стимулирует синтез гонадолиберина гипоталамусом;
- г) может преобразоваться в более активный андроген в клетках-мишенях.

278. Витамин, участвующий в транскетолазных реакциях пенто-зофосфатного пути:

Варианты ответа:

- a) B_1 ;
- δ) B_6 ;
- B) B_{12} ;
- г) C.

279. Витамин, участвующий в образовании никотиновых коферментов:

Варианты ответа:

- a) B_1 ;
- δ) B_2 ;
- B) B_6 ;
- г) PP.

280. Выберите неправильное утверждение:

Варианты ответа:

- а) для гипервитаминоза D характерно избыточное поглощение Ca^{2+} в кишечнике;
 - б) витамин К синтезируется микрофлорой кишечника;
 - в) одним из сильнейших природных антиоксидантов является витамин Е;
 - г) витамин Е входит в состав зрительного пурпура родопсина.

281. Тип реакций, в котором принимает участие биотин:

- а) карбоксилирование;
- б) декарбоксилирование;
- в) трансаминирование.

	282. Витамин, необходимый для превращения гистидина в гистамин:
	Варианты ответа:
	a) B_1 ;
	б) B ₂ ;
	в) B ₆ ;
	г) C.
	283. Витамин, необходимый для превращения пропионил-КоА в
мет	илмалонил-КоА:
	Варианты ответа:
	a) B_6 ;
	6) B ₁₂ ;
	B) C;
	г) Н.
	284. Антисеборейный витамин:
	Варианты ответа:
	a) B_2 ;
	б) B ₆ ;
	в) H; г) E.
	285. Второе название рибофлавина:
	Варианты ответа:
	а) витамин роста;
	б) антианемический; в) антидерматитный;
	г) антипеллагрический.
	286. Синергист витамина Е:
	Варианты ответа:
	a) Co;
	6) Fe;
	в) Se; г) Cu.
	287. Витамин Е накапливается:
	Варианты ответа:
	а) в почках;
	б) в жировой ткани;
	в) в мышечной ткани.
	288. Витамин К не участвует в синтезе этого фактора свертыва-
ния	крови:
	Варианты ответа:
	a) II;
	б) III;

- в) VII;
- г) IX;
- д) Х.

289. Ключевой фермент синтеза эстрогенов:

Варианты ответа:

- а) лизосомальная арилэстераза;
- б) митохондриальная аспартатаминотрансфераза;
- в) микросомальная ароматаза;
- г) N-гликозилтрансфераза.

290. Синтез 1,25-дигидроксихолекальциферола происходит:

Варианты ответа:

- а) в коже под действием ультрафиолетового света из 7-альфа-дегидро-холестерола;
 - б) в почках из 25-гидроксихолекальциферола;
 - в) в печени из холекальциферола;
 - г) в кишечнике из холекальциферола;
 - д) не синтезируется в организме человека.

291. Эйкозаноиды являются производными полиненасыщенных жирных кислот с числом углеродных атомов:

Варианты ответа:

- a) 16;
- б) 18;
- в) 20;
- r) 21;
- д) 24.

292. Ключевой фермент синтеза лейкотриенов:

Варианты ответа:

- а) липоксигеназа;
- б) фосфодиэстераза;
- в) каталаза.

293. Ключевой фермент синтеза простагландинов и тромбоксанов:

Варианты ответа:

- а) аденилатциклаза;
- б) пероксидаза;
- в) циклооксигеназа.

294. Гормон, проникающий в клетку-мишень:

- а) альдостерон;
- б) глюкагон;
- в) кортикотропин (АКТГ);
- г) адреналин.

295. Фосфолипаза С:

Варианты ответа:

- а) мембранный фосфолипид;
- б) непосредственно активирует протеинкиназу С;
- в) гидролизует фосфоинозитол-4,5-дифосфат;
- г) дефосфорилирует инозитол-1,4,5-трифосфат.

296. Гормоны, непроникающие в клетку, действуют преимущественно через:

Варианты ответа:

- а) изменение активности ферментов;
- б) изменение количества ферментов;
- в) изменение проницаемости мембран.

297. Гормон, активирующий аденилатциклазу:

Варианты ответа:

- а) тестостерон;
- б) адреналин;
- в) эстрадиол;
- г) кортизол.

298. Гормон, обладающий анаболическим действием:

Варианты ответа:

- а) вазопрессин;
- б) гистамин;
- в) серотонин;
- г) тиротропин;
- д) соматотропин.

299. Тиреоидные гормоны:

Варианты ответа:

- а) понижают уровень глюкозы в крови;
- б) являются гормонами роста и дифференцировки;
- в) уменьшают тканевое потребление кислорода;
- г) являются гормонами, непроникающими в клетку.

300. Орган-мишень для глюкагона:

Варианты ответа:

- а) печень;
- б) почки;
- в) скелетная мышечная ткань;
- г) лимфоидная ткань.

301. Интегральный показатель секреции стероидных гормонов:

- а) 11-кетостероиды в моче;
- б) 17-кетостероиды в моче;
- в) 17-кетостероиды в сыворотке крови.

302. Фермент синтеза прегненолона:

Варианты ответа:

- а) цитохромоксидаза;
- б) моноаминоксидаза;
- в) цитохром P_{450} ;
- г) глутатион-S-трансфераза.

303. Вещество, снижающее уровень тиреоидных гормонов при гипертиреозе:

Варианты ответа:

- а) антиструмин;
- б) холевая кислота;
- в) фенобарбитал;
- г) тиомочевина.

304. Синтетический аналог эстрогенов, использующийся в онкологической практике:

Варианты ответа:

- а) эстрон;
- б) гидрокортизон;
- в) дигидроэпиандростерон;
- г) синеэстрол.

305. Число аминокислотных остатков в составе энкефалинов:

Варианты ответа:

- а) четыре;
- б) пять;
- в) шесть;
- г) семь;
- д) восемь.

306. Железа, находящаяся под непосредственным контролем коры головного мозга:

Варианты ответа:

- а) гипоталамус;
- б) гипофиз;
- в) щитовидная железа;
- г) корковое вещество надпочечников;
- д) инсулоциты поджелудочной железы.

307. Гормон вилочковой железы тимопоэтин II:

- а) является стеройдом;
- б) стимулирует образование В-лимфоцитов;
- в) ингибирует выработку энкефалинов;
- г) стимулирует образование Т-лимфоцитов.

308. Причина сахарного диабета — нарушение выработки:

Варианты ответа:

- а) глюкокортикоидов;
- б) инсулина;
- в) тиреоидных гормонов;
- г) соматотропина;
- д) адреналина;
- е) вазопрессина.

309. Причина несахарного диабета — нарушение выработки:

Варианты ответа:

- а) глюкокортикоидов;
- б) тиреоидных гормонов;
- в) соматотропина;
- г) адреналина;
- д) инсулина;
- е) вазопрессина.

310. Причина феохромоцитомы — нарушение выработки:

Варианты ответа:

- а) глюкокортикоидов;
- б) тиреоидных гормонов;
- в) соматотропина;
- г) адреналина;
- д) инсулина;
- е) вазопрессина.

311. Причина синдрома Иценко-Кушинга — нарушение выработки:

Варианты ответа:

- а) тиреоидных гормонов;
- б) соматотропина;
- в) глюкокортикоидов;
- г) адреналина;
- д) инсулина;
- е) вазопрессина.

312. Причина микседемы — нарушение выработки:

- а) глюкокортикоидов;
- б) соматотропина;
- в) адреналина;
- г) тиреоидных гормонов;
- д) инсулина;
- е) вазопрессина.

313. Причина акромегалии — нарушение выработки:

Варианты ответа:

- а) глюкокортикоидов;
- б) тиреоидных гормонов;
- в) адреналина;
- г) инсулина;
- д) соматотропина;
- е) вазопрессина.

314. Базедова болезнь — результат:

Варианты ответа:

- а) снижения продукции глюкокортикоидов;
- б) повышения продукции тироксина;
- в) повышения продукции минералокортикоидов;
- г) повышения продукции кортикотропина (АКТГ).

315. Увеличивает высвобождение Ca²⁺ из ЭПР:

Варианты ответа:

- а) инозитолтрифосфат (IP₃);
- б) диацилглицерол (ДАГ);
- в) паратгормон;
- г) 1,25-Дигидроксихолекальциферол (1,25(OH)₂-D₃).

316. Дефицит йода в пище:

Варианты ответа:

- а) непосредственно влияет на синтез тиреоглобулина на рибосомах;
- б) приводит к снижению продукции тиреолиберина;
- в) приводит к увеличенному выделению тепла;
- г) приводит к увеличению секреции тиреотропного гормона (ТТГ).

317. Свойство адреналина:

Варианты ответа:

- а) синтезируется из тирозина;
- б) действует только через фосфоинозитольный механизм;
- в) вызывает снижение уровня цАМФ в гепатоцитах;
- г) действует подобно стероидному гормону.

318. Гонадолиберин стимулирует высвобождение:

- а) ЛГ и ФСГ;
- б) СТГ;
- в) Т₃ и Т₄;
- г) пролактина;
- д) соматомединов.

319. Ключевое соединение для синтеза и тестостерона, и кортизола из холестерина:

Варианты ответа:

- а) 7-гидроксихолестерол;
- б) альдостерон;
- в) прегненолон;
- г) ретиноевая кислота.

320. Высвобождение этого гормона тормозится тироксином:

Варианты ответа:

- а) лютеинизирующий гормон (ЛГ);
- б) пролактин;
- в) гормон роста (СТГ);
- г) фолликулостимулирующий гормон (ФСГ);
- д) тиреотропный гормон (ТТГ).

321. Связывается с рецепторами клеток Лейдига:

Варианты ответа:

- а) пролактин;
- б) лютеинизирующий гормон (ЛГ);
- в) тиреотропный гормон (ТТГ);
- г) гормон роста (СТГ);
- д) фолликулостимулирующий гормон (ФСГ).

322. Стимулирует продукцию инсулиноподобного фактора роста (ИФР):

Варианты ответа:

- а) лютеинизирующий гормон (ЛГ);
- б) пролактин;
- в) тиреотропный гормон (ТТГ);
- г) гормон роста (СТГ);
- д) фолликулостимулирующий гормон (ФСГ).

323. Стимулирует синтез белков молока:

Варианты ответа:

- а) пролактин;
- б) лютеинизирующий гормон (ЛГ);
- в) тиреотропный гормон (ТТГ);
- г) гормон роста (СТГ);
- д) фолликулостимулирующий гормон (ФСГ).

324. Стимулирует продукцию прогестерона желтым телом:

- а) пролактин;
- б) тиреотропный гормон (ТТГ);
- в) гормон роста (СТГ);
- г) лютеинизирующий гормон (ЛГ);
- д) фолликулостимулирующий гормон (ФСГ).

325. Стимулирует продукцию эстрадиола незрелым фолликулом яичников:

Варианты ответа:

- а) лютеинизирующий гормон (ЛГ);
- б) пролактин;
- в) тиреотропный гормон (ТТГ);
- г) гормон роста (СТГ);
- д) фолликулостимулирующий гормон (ФСГ).

326. Действует через вторичный посредник:

Варианты ответа:

- а) адреналин;
- б) альдостерон;
- в) кортизол;
- г) тестостерон.

327. Приводит к индукции фосфоенолпируваткарбоксикиназы (ФЕПКК):

Варианты ответа:

- а) адреналин;
- б) альдостерон;
- в) инсулин;
- г) кортизол.

328. Выделяется в ответ на ангиотензин II:

Варианты ответа:

- а) альдостерон;
- б) глюкагон;
- в) кортизол;
- г) эстрадиол.

329. Ингибирует диурез:

Варианты ответа:

- а) вазопрессин;
- б) окситоцин;
- в) пролактин;
- г) тироксин.

330. Образуется из проопиомеланокортина (ПОМК):

- а) вазопрессин;
- б) глюкагон;
- в) инсулин;
- г) кортикотропин (АКТГ);
- д) окситоцин.

РАЗДЕЛ 7

БИОХИМИЯ КРОВИ

331. В состав фракции гамма-глобулинов входит:

Варианты ответа:

- а) иммунноглобулин G;
- б) фибриноген;
- в) гаптоглобин;
- г) трансферрин;
- д) альфа-2-макроглобулин.

332. Определение альфа-фетопротеина имеет диагностическое значение при:

Варианты ответа:

- а) инфекционном гепатите;
- б) первичном раке печени;
- в) раке желудка;
- г) осложненном инфаркте миокарда.

333. Содержание гамма-глобулинов снижается при:

Варианты ответа:

- а) ишемической болезни сердца;
- б) гастрите;
- в) аппендиците;
- г) ревматоидном артрите;
- д) лучевой болезни.

334. Сопровождается парапротеинемией:

Варианты ответа:

- а) геморрагический диатез;
- б) гипергликемия;
- в) миеломная болезнь;
- г) диспротеиннемия.

335. Содержание фибриногена в крови может снизиться при:

Варианты ответа:

- а) хронических заболеваниях печени;
- б) инфаркте миокарда;
- в) ревматизме;
- г) уремии;
- д) остром воспалении.

336. Остаточный азот повышается за счет мочевины при:

- а) остром гепатите;
- б) ишемической болезни сердца;
- в) циррозе печени;

- г) острой желтой атрофии печени;
- д) острой хронической почечной недостаточности.

337. Источник креатина в организме:

Варианты ответа:

- а) синтез в эритроцитах;
- б) синтез в печени;
- в) поступает в организм с пищей;
- г) образуется в центральной нервной системе.

338. К гиперпротеинемии может привести:

Варианты ответа:

- а) гипергидратация;
- б) обезвоживание организма;
- в) снижение всасывания белков в кишечнике;
- г) повышение проницаемости эндотелия сосудов.

339. Основная физиологическая роль гаптоглобина:

Варианты ответа:

- а) участие в реакции иммунитета;
- б) участие в свертывании крови;
- в) связывание гемоглобина.

340. Белок крови, проявляющий антипротеазную активность:

Варианты ответа:

- а) прекалликреин;
- б) иммуноглобулин Е;
- в) плазменный фактор IV свертывания крови;
- г) альфа-1-антитрипсин.

341. Белок, транспортирующий стероидные гормоны:

Варианты ответа:

- а) хондропротеид;
- б) С-реактивный белок;
- в) транскортин;
- г) трансферрин.

342. Белок острой фазы, выявление его в крови сигнализирует об обострении хронического процесса:

Варианты ответа:

- а) хондропротеид;
- б) транскортин;
- в) С-реактивный белок.

343. Метгемоглобин в организме человека может восстанавливаться с помощью фермента:

- а) каталазы;
- б) оксидазы;

- в) пепсина;
- г) редуктазы.

344. При этой желтухе выделение уробилиногена (стеркобилиногена) с мочой увеличивается:

Варианты ответа:

- а) паренхиматозная;
- б) механическая;
- в) синдром Жильбера;
- г) синдром Ротора;
- д) гемолитическая.

345. Транспортируется гаптоглобином:

Варианты ответа:

- а) железо;
- б) медь;
- в) гемоглобин;
- г) альбумин;
- д) тироксин.

346. Недостаток этого белка приводит к развитию болезни Коновалова-Вильсона (дистрофии печени и селезенки):

Варианты ответа:

- а) транскортина;
- б) кератансульфата;
- в) тиреотропина;
- г) гаптоглобина;
- д) церулоплазмина.

347. Фактор, предохраняющий организм от потери эндогенного железа:

Варианты ответа:

- а) церулоплазмин;
- б) транскортин;
- в) гаптоглобин;
- г) кератансульфат;
- д) тиреотропин.

348. При укусе змеи, в яде которой содержится гиалуронидаза, в тканях и крови могут появиться:

- а) глюкозамины;
- б) галактоза;
- в) фукоза.

349. У больных с язвенной болезнью желудка мукопротеид слизистой разрушается, потому что при данном заболевании отмечается повышенная активность фермента:

Варианты ответа:

- а) гиалуронидазы;
- б) каталазы;
- в) нейроамидиназы.

350. Роль трансферрина:

Варианты ответа:

- а) связывает ион меди;
- б) транспортирует железо;
- в) транспортирует гормоны;
- г) транспортирует гемоглобин.

351. Специфический белок, синтезируемый в ответ на воздействие вирусов:

Варианты ответа:

- а) криоглобулин;
- б) С-реактивный белок;
- в) интерферон;
- г) трансферрин;
- д) церулоплазмин.

352. При заболеваниях, поражающих соединительную ткань (ревматизм, системные поражения кожи, туберкулез) в крови увеличится содержание:

Варианты ответа:

- а) фукозы;
- б) сиаловых кислот;
- в) аминосахаров;
- г) урогликопротеидов.

353. В простетическую часть гемоглобина входит:

Варианты ответа:

- а) копропорфирин;
- б) уропорфирин;
- в) порфин;
- г) протопорфирин;
- д) казеин.

354. Молекулярный дефект в гемоглобине S:

- а) замена глутаминовой кислоты на валин;
- б) замена валина на глутаминовую кислоту;
- в) замена альфа-цепей на бета-цепи;
- г) замена бета-цепей на альфа-цепи.

355. Относительная плотность (удельный вес) цельной крови:

Варианты ответа:

- a) 1,025–1,034;
- б) 1,050–1,060;
- в) 1,090–1,100.

356. Буферная система, на долю которой приходится 2/3 буферной емкости крови:

Варианты ответа:

- а) белковая;
- б) гемоглобиновая;
- в) карбонатная;
- г) фосфатная.

357. Содержание альбуминов в сухом остатке плазмы крови:

Варианты ответа:

- a) 4,5%;
- 6) 2-3%;
- в) 0,2–0,4%.

358. Содержание глобулинов в сухом остатке плазмы крови:

Варианты ответа:

- a) 4,5%;
- 6) 2-3%;
- в) 0,2–0,4%.

359. Белки, играющие важную роль в поддержании онкотического давления крови:

Варианты ответа:

- а) альбумины;
- б) глобулины;
- в) белковые факторы свертывания крови.

360. Характерно для эритроцитов:

Варианты ответа:

- а) продолжительность жизни 5 дней;
- б) ядросодержащие клетки;
- в) разрушаются в селезенке и печени.

361. Содержание гемоглобина в норме у взрослого человека в среднем:

- а) мужчины 145 г/л, женщины 130 г/л;
- б) мужчины 130 г/л, женщины 145 г/л;
- в) мужчины 120 г/л, женщины 100 г/л.

362. Метгемоглобин — это...:

Варианты ответа:

- а) окисленный гемоглобин, образующийся при действии сильных окислителей;
 - б) соединение гемоглобина с кислородом;
 - в) соединение гемоглобина с угарным газом;
 - г) соединение гемоглобина с углекислым газом.

363. Гемоглобин синтезируется:

Варианты ответа:

- а) в печени;
- б) в селезенке;
- в) эритробластами и нормобластами костного мозга;
- г) в лимфатических узлах.

364. Минимальная граница осмотической резистентности эритроцитов — это концентрация поваренной соли, при которой...:

Варианты ответа:

- а) происходит гемолиз всех эритроцитов;
- б) происходит гемолиз слабых эритроцитов;
- в) не происходит гемолиза.

365. Химический гемолиз происходит:

Варианты ответа:

- а) при переливании несовместимой группы крови;
- б) при замораживании и оттаивании крови;
- в) при сильном встряхивании крови;
- г) под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов.

366. Механический гемолиз происходит:

Варианты ответа:

- а) при замораживании и оттаивании крови;
- б) при переливании несовместимой группы крови;
- в) при сильном встряхивании крови;
- г) под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов.

367. Термический гемолиз происходит:

- а) при замораживании и оттаивании крови;
- б) при переливании несовместимой группы крови;
- в) при сильном встряхивании крови;
- г) под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов.

368. Биологический гемолиз происходит:

Варианты ответа:

- а) при замораживании и оттаивании крови;
- б) при переливании несовместимой группы крови;
- в) при сильном встряхивании крови;
- г) под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов.

369. Оксигемоглобин, отдавший кислород:

Варианты ответа:

- а) метгемоглобин;
- б) дезоксигемоглобин;
- в) карбоксигемоглобин;
- г) карбгемоглобин.

370. Главное соединение крови, содержащее азот небелкового происхождения:

Варианты ответа:

- а) аденин;
- б) аммиак;
- в) мочевая кислота;
- г) мочевина;
- д) билирубин;
- е) эрготионеин.

371. Секреторный иммуноглобулин:

- a) Ig M;
- б) Ig G;
- в) Ig E;
- г) Ig D;
- д) Ig A.

ОТВЕТЫ НА ТЕСТЫ

ЭНЗИМОЛОГИЯ

No	Правильный	№	Правильный	№	Правильный	№	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
1	a	17	б	33	a	49	В
2	Γ	18	Γ	34	Γ	50	a
3	В	19	a	35	a	51	Γ
4	В	20	В	36	б	52	a
5	б	21	Γ	37	e	53	В
6	В	22	В	38	В	54	Д
7	a	23	a	39	a	55	Γ
8	В	24	Д	40	Γ	56	б
9	Γ	25	Д	41	Д	57	a
10	В	26	a	42	a	58	e
11	a	27	б	43	б	59	Γ
12	a	28	Γ	44	Γ	60	б
13	Д	29	a	45	a	61	Γ
14	В	30	a	46	a	62	a
15	В	31	В	47	б	63	Д
16	a	32	б	48	a	64	a

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ

No	Правильный	No	Правильный	$N_{\underline{0}}$	Правильный	№	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
65	a	80	Д	95	a	110	a
66	В	81	a	96	б	111	Γ
67	б	82	В	97	Γ	112	б
68	Γ	83	a	98	a	113	Γ
69	б	84	б	99	б	114	Д
70	a	85	Γ	100	Д	115	a
71	б	86	Γ	101	a	116	б
72	В	87	В	102	В	117	Γ
73	a	88	б	103	Γ	118	б
74	Γ	89	a	104	a	119	a
75	б	90	a	105	a	120	В
76	Γ	91	Д	106	б	121	б
77	В	92	В	107	В		
78	a	93	a	108	Γ		
79	б	94	б	109	В		

БИОХИМИЯ УГЛЕВОДОВ

№	Правильный	№	Правильный	№	Правильный	$N_{\underline{0}}$	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
122	Γ	137	ж	152	Д	167	a
123	В	138	a	153	a	168	б
124	a	139	Γ	154	Д	169	Γ
125	Д	140	a	155	Γ	170	В
126	e	141	б	156	a	171	Д
127	a	142	a	157	б	172	б
128	б	143	Д	158	a	173	e
129	a	144	б	159	Д	174	e
130	В	145	В	160	В	175	В
131	В	146	Γ	161	В	176	Д
132	a	147	a	162	a	177	a
133	Д	148	В	163	б	178	б
134	В	149	Γ	164	Γ	179	a
135	б	150	В	165	Д	180	Γ
136	e	151	б	166	a	181	Д

БИОХИМИЯ ЛИПИДОВ

№	Правильный	№	Правильный	№	Правильный	№	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
182	a	194	a	206	Γ	218	ж
183	a	195	В	207	e	219	б
184	б	196	a	208	б	220	a
185	б	197	Γ	209	Γ	221	Д
186	Γ	198	б	210	a	222	б
187	Д	199	Д	211	Γ	223	В
188	a	200	В	212	В	224	Д
189	Γ	201	Д	213	В	225	б
190	В	202	Д	214	б	226	a
191	a	203	В	215	a		
192	В	204	a	216	В		
193	Ж	205	б	217	Γ		

БИОХИМИЯ БЕЛКОВ И НУКЛЕИНОВЫХ КИСЛОТ

No	Правильный	No	Правильный	No	Правильный	№	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
227	Γ	240	Γ	253	a	266	a
228	б	241	a	254	В	267	В
229	a	242	б	255	e	268	Γ
230	Γ	243	В	256	В	269	a
231	Γ	244	a	257	a	270	Γ
232	В	245	В	258	б	271	б
233	a	246	Γ	259	Д	272	б
234	В	247	a	260	a	273	a
235	Γ	248	б	261	a	274	В
236	В	249	a	262	В	275	б
237	Γ	250	Γ	263	б		
238	a	251	В	264	Д		
239	a	252	б	265	б		

БИОХИМИЯ ВИТАМИНОВ И ГОРМОНОВ

$N_{\overline{0}}$	Правильный	№	Правильный	№	Правильный	№	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
276	a	290	б	304	Γ	318	a
277	Γ	291	В	305	б	319	В
278	a	292	a	306	a	320	Д
279	Γ	293	В	307	Γ	321	б
280	Γ	294	a	308	б	322	Γ
281	a	295	В	309	e	323	a
282	В	296	a	310	Γ	324	Γ
283	Γ	297	б	311	В	325	Д
284	В	298	Д	312	Γ	326	a
285	a	299	б	313	Д	327	Γ
286	В	300	a	314	б	328	a
287	б	301	б	315	a	329	a
288	б	302	В	316	Γ	330	Γ
289	В	303	Γ	317	a		

БИОХИМИЯ КРОВИ

No	Правильный	№	Правильный	№	Правильный	$N_{\underline{0}}$	Правильный
вопроса	ответ	вопроса	ответ	вопроса	ответ	вопроса	ответ
331	a	342	В	353	Γ	364	б
332	б	343	Γ	354	a	365	Γ
333	Д	344	Д	355	б	366	В
334	В	345	В	356	б	367	a
335	a	346	Д	357	a	368	б
336	Д	347	В	358	б	369	б
337	б	348	a	359	a	370	Γ
338	б	349	В	360	В	371	Д
339	В	350	б	361	a		_
340	Γ	351	В	362	a		
341	В	352	б	363	В		

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. *Березов, Т. Т.* Биологическая химия / Т. Т. Березов, Б. Ф. Коровкин. М.: Медицина, 1998. 704 с.
- 2. *Бышевский, А. Ш.* Биохимия для врача / А. Ш. Бышевский, О. А. Терсенов. Екатеринбург, 1994. 384 с.
- 3. Биохимия человека: в 2 т. Т. 1 / Р. Марри [и др.]. М.: Мир, 2004. 381 с.
- 4. Биохимия человека: в 2 т. Т. 2 / Р. Марри [и др.]. М.: Мир, 2004. 414 с.
- 5. *Николаев*, *А. Я.* Биологическая химия / А. Я. Николаев. М.: Медицинское информационное агенство, 2004. 566 с.
- 6. *Филиппович, Ю. Б.* Основы биохимии / Ю. Б. Филиппович. М.: «Агар», 1999. 512 с.
- 7. Биохимия: учебник / Под ред. Е. С. Северина. М.: ГЭОТАР-Медиа, 2006. 784 с.

СОДЕРЖАНИЕ

Список сокращений	3
Раздел 1. Энзимология	5
Раздел 2. Биологическое окисление	16
Раздел 3. Биохимия углеводов	25
Раздел 4. Биохимия липидов	36
Раздел 5. Биохимия белков и нуклеиновых кислот	45
Раздел 6. Биохимия витаминов и гормонов	53
Раздел 7. Биохимия крови	62

Учебное издание

Грицук Александр Иванович **Свергун** Валентина Тимофеевна **Коваль** Александр Николаевич

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО БИОЛОГИЧЕСКОЙ ХИМИИ

Учебно-методическое пособие для студентов 2 курса лечебного, медико-профилактического, медико-диагностического факультетов и факультета подготовки специалистов для зарубежных стран

Редактор Т. Ф. Рулинская Компьютерная верстка Ж. И. Цырыкова

Подписано в печать 25. 03. 2008 Формат $60\times84^1/_{16}$. Бумага офсетная 65 г/м². Гарнитура «Таймс» Усл. печ. л. 4,42. Уч.-изд. л. 4,8. Тираж 800 экз. Заказ № 102

Издатель и полиграфическое исполнение Учреждение образования «Гомельский государственный медицинский университет» 246000, г. Гомель, ул. Ланге, 5 ЛИ № 02330/0133072 от 30. 04. 2004