- 12. Metaomics in Clinical Laboratory: Potential Driving Force for Innovative Disease Diagnosis / L. Wang [et al.] // Front Microbiol. –2022. Vol. 13. P. 883734.
- 13. Bostanci, N. Contribution of proteomics to our understanding of periodontal inflammation / N. Bostanci, K. Bao // Proteomics. -2017. Vol. 17(3-4).
- 14. Jenkinson, H. F. Oral microbial communities in sickness and in health / H. F. Jenkinson, R. J. Lamont // Trends in microbiology. 2005. P. 589–595.

УДК 616.24-002:579.8]-08

Н. С. Кипцевич

Научный руководитель: ассистент кафедры К. В. Левченко

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

СПЕКТР БАКТЕРИАЛЬНЫХ ВОЗБУДИТЕЛЕЙ ПНЕВМОНИИ У ПАЦИЕНТОВ ОТДЕЛЕНИЯ РЕАНИМАЦИИ И ИНТЕНСИВНОЙ ТЕРАПИИ

Введение

Пневмония остается одной из ведущих причин госпитализации в отделения реанимации и интенсивной терапии (ОРИТ) по всему миру. Разнообразие бактериальных возбудителей, их резистентность к антибиотикам, а также высокая частота госпитальных инфекций делают выбор антибактериальной терапии сложной задачей для клиницистов. В условиях интенсивной терапии пациенты особенно уязвимы к нозокомиальным инфекциям из-за инвазивных методов лечения и длительной госпитализации [1, 2].

Большинство выделенных возбудителей из биоматериала пациентов ОРИТ относятся к группе клинически значимых возбудителей ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa и виды Enterobacter), что связано с их способностью вызывать тяжелые инфекции органов дыхания и кровотока. Патогены группы ESKAPE являются наиболее частой причиной неблагоприятного исхода в ОРИТ и характеризуются высокой устойчивостью к большинству применяемых антимикробных препаратов [3, 4].

Изучение спектра бактериальных возбудителей пневмонии в ОРИТ позволит оптимизировать эмпирически назначаемое антибактериальное лечение и уменьшить риск развития антибиотикорезистентности.

Попы

Оценить спектр бактериальных возбудителей пневмонии в ОРИТ, чувствительность к антибиотикам.

Материал и методы исследования

Исследование было выполнено в ретроспективном формате и включало анализ 370 образцов, полученных от пациентов отделения реанимации и интенсивной терапии ГУЗ «Гомельская областная туберкулезная клиническая больница». Из них 139 (37,6%) составили образцы мокроты и 231 (62,4%) – промывные воды бронхов.

Статистическая обработка данных производилась при помощи программы Microsoft Excel 2016 с использованием стандартных методов описательной статистики.

Средние величины представлены в виде М $\pm \sigma$. Для относительных значений определялся 95% доверительный интервал (95% ДИ min-max) методом Клоппера-Пирсона. Для сравнения несвязанных совокупностей использовался критерий χ^2 . Различия считались достоверными при уровне значимости р <0,05.

Результаты исследования и их обсуждение

По результатам анализа 370 образцов мокроты и промывных вод бронхов у пациентов ОРИТ были выявлены следующие возбудители (рисунок 1).

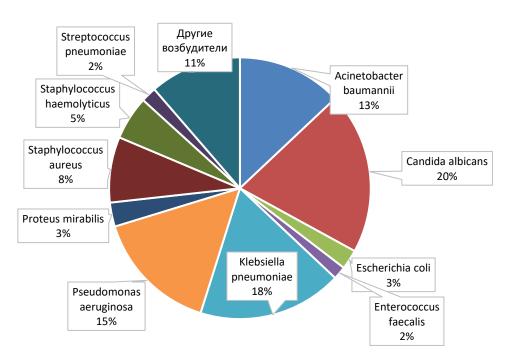


Рисунок 1 – Микробный пейзаж мокроты и ПВБ у пациентов с пневмонией, госпитализированных в ОРИТ

Чаще из исследуемых образцов пациентов ОРИТ были выделены *Klebsiella pneumoniae* - 66 изолятов (17,8%;14,1–22,1), *Pseudomonas aeruginosa* - 57 изолятов (15,4%; 11,8 - 19,4), *Acinetobacter baumannii* - 48 изолятов (12,9%; 9,7–16,8).

Из выделенных штаммов наиболее высокие уровни лекарственной устойчивости выявлены у А. baumannii. У данного возбудителя отмечена устойчивость к аминопенициллинам, цефалоспоринам, фторхинолонам, аминогликозидам и карбапенемам. Чувствительность сохранена лишь к колистину и цефоперазону/сульбактаму. Для К. pneumoniae высокие уровни резистентности определены к аминопенициллинам и цефалоспоринам III поколения, в том числе ингибиторзащищенным.

Выводы

В структуре возбудителей пневмонии пациентов ОРИТ, преобладали грамотрицательные микроорганизмы семейства *Enterobacteriaceae*, составившие 21%, *P. aeruginosa* определена в 15%, *А. baumannii* – в 13% случаев. Выделенные штаммы характеризовались высоким уровнем устойчивости к стартовым антибактериальным лекарственным средствам, используемым в лечении пневмонии, прежде всего аминопенициллинам, цефалоспоринам II—III поколений и респираторным фторхинолонам, что требует назначения антибиотиков резерва.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Иванова, Т. А. Структура и распространенность возбудителей вентиляторассоциированных пневмоний в орит-2 МУЗ ОГКБ № 1 им. Кабанова А. Н. / Т. А. Иванова // Омский медицинский вестник. -2009. Т. 84, № 1. -С. 46–49.
- 2. Белобородов, В. Б. Проблема грибковых инфекций у пациентов хирургических отделений реанимации и интенсивной терапии / В. Б. Белобородов, А. В. Шабунин, А. А. Митрохин // Хирургия. Приложение к журналу Consilium Medicum. 2003. № 1. С. 17–22.
- 3. Пилотное исследование клинического значения и исходов инфекций в ОРИТ, вызванных колистин-резистентной Klebsiella pneumoniae / И. Н. Сычев [и др.] // Вестник анестезиологии и реаниматологии. 2024. Т. 21, № 1. С. 24–34.
- 4. Инфекция, вызванная Acinetobacter baumannii, в отделениях реанимации и интенсивной терапии многопрофильного госпиталя / Л. Л. Плоткин [и др.] // Вестник анестезиологии и реаниматологии. 2017. Т. 14, № 6. С. 22—27.