УДК 616.24 -018.1-046.55-092

Н. С. Чирко, М. А. Авдейчик

Научные руководители: к.м.н., доцент, заведующий кафедрой И. Л. Кравцова, д.б.н., профессор М. Н. Стародубцева

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

ГИСТОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА РЕСПИРАТОРНЫХ ОТДЕЛОВ ЛЕГКИХ КРЫС ПРИ ОБЛУЧЕНИИ ВЕРХНЕЙ ЧАСТИ ТУЛОВИЩА

Введение

Радиационно-индуцированное поражение легких (РИПЛ) – комплексная патология, которая возникает в результате действия облучения на легочную ткань. Может возникать у пациентов при проведении лучевой терапии опухолей грудной клетки. Также в меньшей степени на легочную ткань будут оказывать влияние рентген-процедуры (флюорография, КТ-диагностика и т.д.).

В развитии радиационно-индуцированного поражения легких можно выделить два основных периода: стадия раннего воспаления и поздний легочной фиброз. Средняя частота возникновения легочного фиброза после торакальной лучевой терапии составляет 16–29% [1].

Легочная ткань является высоко восприимчивой к воздействию ионизирующего облучения. Облучение влияет на молекулу ДНК, вызывая ее повреждение и образование активных форм кислорода, которые приводят к возникновению процесса воспаления и изменению структуры ткани. Данные процессы могут приводить как к восстановлению функции, так и к стойкому ухудшению [2,3]. Реакцию лёгких на лучевое воздействие можно разделить на 5 фаз: ранняя фаза, которая начинается вскоре после радиотерапии, охватывая от нескольких часов до нескольких дней; латентная фаза, которая длится до четырех недель после воздействия радиации; экссудативная фаза, также известная как клиническая фаза РП, которая обычно развивается между тремя и восемью неделями после воздействия радиации; промежуточная фаза (острый пневмонит), которая возникает через 2—6 месяцев после воздействия радиации; фиброзная фаза, которая может проявиться через шесть месяцев воздействия радиации [4].

Патогенез РИПЛ и радиационно-индуцированного легочного фиброза(РИЛФ) представляет собой сложный многоступенчатый процесс, в который вовлечены клетки легочной ткани, а также иммунные клетки, и который запускается и поддерживается посредством множественной меж- и внутриклеточной коммуникацией и сигнальными событиями. Согласно современным представлениям, каскад молекулярных реакций, связанных с повреждением ткани, провоспалительных цитокинов и хемокинов, высвобождаемых умирающими и стареющими эпителиальными клетками, эндотелиальными клетками и активированными иммунными клетками, по существу, способствует развитию РИПЛ и РИЛФ [5].

Пель

Изучить гистологические изменения респираторных отделов легких крыс при радиационно-индуцированном поражении легких.

Материал и методы исследования

Проведен анализ гистологических препаратов легких крыс, подвергшихся однократному локальному облучение верхней половины туловища с использованием рентгеновского аппарата биологического назначения X-RAD 320 Precision X-ray Inc в дозе 0,1 Гр (4 особи). Животные предварительно седатировались и фиксировались на столике для облучения. Контрольная группа была сформирована из 5 крыс, которые находились в тех же условиях, что и экспериментальная группа, но без воздействия рентгеновского излучения. Выведение животных из эксперимента осуществлялось через 21 день после воздействия рентгеновским излучением.

Цифровой видеокамерой камерой на базе микроскопа HumaScope Premium при увеличении окуляра $\times 10$ и объектива на $\times 10$ и на $\times 40$ производили микрофотосъемку случайных полей зрения гистологических препаратов.

Результаты исследования и их обсуждение

При гистологическом исследовании респираторных отделов контрольной группы крыс обнаружены дыхательные бронхиолы нескольких порядков, альвеолярные ходы, альвеолярные мешочки и многочисленные альвеолы. Терминальные бронхиолы включали две оболочки: слизистую и адвентициальную. Слизистая оболочка выстлана кубическим эпителием. Между реснитчатыми эпителиоцитами встречались клетки без ресничек — клетки Клара. Под эпителием находилась очень тонкая собственная пластинка, содержащая пучки эластических волокон. В мышечной пластинке определялись 1–2 слоя гладких миоцитов. Волокна рыхлой соединительной ткани адвентициальной оболочки вплетались в интерстициальную соединительную ткань.

Альвеолы тесно прилежали друг к другу и были разделены межальвеолярными перегородками. В перегородках обнаруживались эластические и ретикулярные волокна, большое количество капилляров и клеточные элементы: фибробласты, альвеолярные макрофаги, лимфоциты и другие. Характерно, что септы имели разную толщину, благодаря различному содержанию клеток и межклеточного вещества.

При облучении лабораторных животных дозой 0,1 Гр в легких выявлялись небольшие участки с повышенной воздушностью, в периферических отделах обнаруживалось полнокровие в сосудах, геморрагическое пропитывание межальвеолярных перегородок, их утолщение, увеличение количества фибробластов и миофибробластов. Возле крупных сосудов наблюдалось разрастание жировой ткани. В альвеолах, альвеолярных ходах и мешочках у всех животных определялся десквамированный эпителий, слабо выраженная инфильтрация межальвеолярных перегородок лимфоцитами и единичными нейтрофилами (рисунок 1Б).

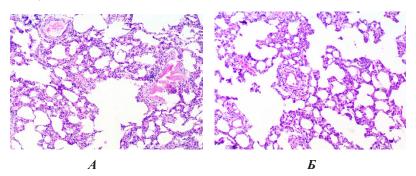


Рисунок 1 — Экспериментальная группа А. Полнокровие. Окраска: гематоксилином и эозином. Увеличение: ×100; Б. Инфильтрация межальвеолярных перегородок лимфоцитами и единичными нейтрофилами. Окраска: гематоксилином и эозином. Увеличение: ×100

В некоторых случаях локально в альвеолах наблюдались значительные участки разрушения эпителиальной выстилки и обнажения базальной мембраны. Отдельные

альвеолы и альвеолярные ходы включали большое количество пенистых макрофагов (рисунок 2A). В паренхиме легкого были выявлены очаги ателектазов с мелкими участками геморрагического пропитывания и полнокровия в сосудах (рисунок 2Б)

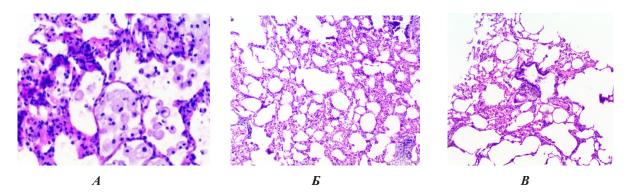


Рисунок 2 — Экспериментальная группа А. Пенистые макрофаги в просвете альвеол. Окраска: гематоксилином и эозином. Увеличение: ×400; Б, В Мелкие участки геморрагического пропитывания и полнокровия в капиллярах. Окраска: гематоксилином и эозином. Увеличение: ×100

Как известно, участие макрофагов и миофибробластов в процессе хронического воспаления приводит к развитию легочного фиброза. Наблюдающиеся даже минимально выраженные морфологические изменения в легочной ткани при воздействии сверхмалой дозы облучения сопровождаются десквамацией эпителия альвеол, заменой поврежденных альвеолоцитов I типа альвеолоцитами II типа, отеком альвеолярной стенки и экссудация жидкости в полость альвеолы с миграцией иммунных клеток. Макрофаги имеют определяющее значение в развитии легочного фиброза, так как они синтезируют вещества, стимулирующие синтез коллагена.

Выводы

Таким образом, в легких крыс, подвергшихся однократному локальному облучение верхней половины туловища, наблюдаются морфологические изменения, сопровождающиеся утолщением межальвеолярных перегородок, появлением большого количества макрофагов, полнокровием сосудов, десквамацией эпителия.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Zhang, Y. Histopathological changes in lung tissue following radiation-induced injury / X. Wang, H. Li // Journal of Radiation Research. -2021. Vol. 62, No. 3. P. 345-354.
- 2. Radiation-induced lung injury: current perspectives / M. Arroyo-Hernandez, F. Maldonado, F. Lozano-Ruiz [et al.] // BMC Pulmonary Medicine. − 2021. − Vol. 21, № 1. − P. 9.
- 3. Radiation-induced lung injury (RILI) / L. Giuranno, J. Ient, D. De Ruysscher [et al.] // Frontiers in Oncology. -2019. Vol. 9. P. 877.
- 4. Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance / L. Lu, C. Sun, Q. Su [et al.] // Clinical and Experimental Medicine. -2019. Vol. 19, N0 4. P. 417–426.
- 5. Radiation-induced pulmonary toxicity cellular and molecular mechanisms of pathogenesis, management, and literature review / L. Kasmann, A. Dietrich, C. A. Staab-Weijnitz [et al.] // Radiation Oncology. -2020. Vol. 15, N₂ 1. P. 214.