Элиминационные диеты могут предупреждать рецидивы аллергических заболеваний, снижая тяжесть течения аллергических заболеваний. Разработанные индивидуальные разрешительно-элиминационные схемы обеспечивают прекращение заболевания почти у 25 % лиц, страдающих атопическим дерматитом легкой и средней степени тяжести, без использования лекарственных (местных и общих) препаратов.

Однако противоречивость результатов, полученных при изучении влияния ЭД на профилактику аллергических заболеваний у детей, требует дополнительного, более углубленного изучения.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Ревякина, В. А. Проблема пищевой аллергии на современном этапе / В. А. Ревякина // Вопросы питания. 2020. Т. $89, \, \mathbb{N}_{2} \, 4.$ С. 186-192.
- 2. Лусс, Л. В. Пищевая аллергия и пищевая непереносимость. Справочные таблицы и рекомендации / Л. В. Лусс // Российский аллергологический журнал. -2011. -№ 3. C. 93-100.
- 3. Kramer, M. S. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child (Review) / M. S. Kramer, R. Kakuma // Evid.-Based Child Health. 2014. Vol. 9 (N 2). P. 447–483. doi: 10.1002/ebch.1972
- 4. Molina-Infante, J. Dietary therapy for eosinophilic esophagitis / J. Molina-Infante, A. J. Lucendo // Allergy Clin Immunol. -2018. Vol. 142 (N2 1). P. 41–47. doi: 10.1016/j.jaci.2018.02.028

УДК 546.798.23:546.36:614.876(476.2)

В. Н. Бортновский¹, Е. К. Нилова², С. А. Калиниченко³, С. А. Тагай^{3,4}, А. Н. Никитин⁴

 1 Учреждение образования

«Гомельский государственный медицинский университет»

г. Гомель, Республика Беларусь,

 2 Государственное научное техническое учреждение «Центр по ядерной и радиационной безопасности»

г. Минск, Республика Беларусь,

³Государственное природоохранное научно-исследовательское учреждение «Полесский государственный радиационно-экологический заповедник»

г. Хойники, Республика Беларусь,

⁴Государственное научное учреждение «Институт радиобиологии Национальной академии наук Беларуси»

г. Гомель, Республика Беларусь

РАДИОЭКОЛОГИЧЕСКАЯ ОБСТАНОВКА НА ТЕРРИТОРИИ ХОЙНИКСКОГО РАЙОНА ГОМЕЛЬСКОЙ ОБЛАСТИ: СОДЕРЖАНИЕ ¹³⁷CS И ²⁴¹AM В ПОЧВЕ, МЕСТНЫХ ПРОДУКТАХ ПИТАНИЯ, ДОЗЫ ВНУТРЕННЕГО ОБЛУЧЕНИЯ

Введение

В эколого-медицинском аспекте катастрофа на ЧАЭС признана исключительно тяжелой для жителей села и агропромышленного комплекса. На загрязненных радионуклидами территориях агропромышленное производство являлось важнейшим сегментом экономики, основным контингентом населения в зоне аварии являлись сель-

ские жители [1], а сельскохозяйственная продукция была одним из ведущих источников облучения населения.

На территории Республики Беларусь радиоактивному загрязнению ¹³⁷Cs подверглось более 1,8 млн га (или 21 %) сельскохозяйственных земель. Наибольшими уровнями загрязнения характеризуется территория южных районов Гомельской области. На данном этапе постчернобыльского периода в ситуации существующего облучения, принимая во внимание увеличение 241 Am через распад 241 Pu ($T_{_{1/2}}=14,3$ лет), важным является уточнение содержания 241 Am при сопоставлении с 137 Cs в почве и местных продуктах питания, а также последующая оценка вклада указанных радионуклидов в дозы облучения населения. Продолжительный период полураспада 241 Am ($T_{1/2} = 432,2$ лет) с испусканием высокоэнергетических α -частиц (E_{α} =5485,6 кэB, 5442,9 кэB) определяет возрастающую значимость этого радиоизотопа при возможном его вовлечении в ингаляционный и пищевой пути поступления к человеку.

 ${\it Цель}$ – выполнить оценку доз внутреннего облучения $^{137}{\rm Cs}$ и $^{241}{\rm Am}$ жителей населенных пунктов Хойникского района, прилегающих к Полесскому государственному радиационно-экологическому заповеднику (ПГРЭЗ).

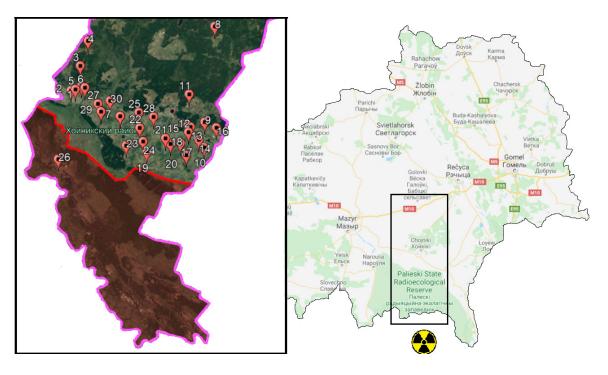
Материалы и методы исследования

На территории 96 частных подворий в 30 населенных пунктах Хойникского района в 2018 г. проведен отбор проб почвы и продуктов питания местного производства. Содержание 241 Am ($E_{\gamma}=59,6$ кэB) и 137 Cs ($E_{\gamma}=661,6$ кэB) в почве определяли методом гамма-спектрометрии. Местные продукты питания отбирались на отдельных шести частных подворьях, где установлено максимальное содержание ²⁴¹Am в пробах почвы. Определение удельной активности ¹³⁷Cs в пробах продуктов питания выполнялось методом гамма-спектрометрии, $^{241}\mathrm{Am}-$ методом радиохимической очистки с использованием селективных смол TRU-TEVA-Spec Resin и альфа-спектрометрической идентификацией.

Результаты исследования и их обсуждение

Уровни содержания 241 Am и 137 Cs в почве и местных продуктах для шести населенных пунктов представлены в таблицах 1, 2. Расположение всех обследованных населенных пунктов района относительно ЧАЭС и границ ПГРЭЗ представлено на рисунке 1.

Следует отметить, что в населенном пункте Тульговичи до аварии было 300 дворов и проживало около 2000 человек. В настоящее время в деревне расположилось лесничество ПГРЭЗ, а постоянно проживает один человек, трудовая деятельность которого связана с лесничеством, он имеет свое подворье и производит продукты для собственного потребления. Пункты Вить и Стреличево характеризуются наибольшей численностью населения в районе, в каждом из них проживает несколько сотен жителей. При этом в районе отсутствуют населенные пункты (за исключением г. Хойники) с населением более тысячи человек. Всего после катастрофы вынужденно покинули дома более 20 тыс. жителей района.


Таблица $1 - {}^{137}\mathrm{Cs}$ и ${}^{241}\mathrm{Am}$ в почве подворий Хойникского района

11	IC		¹³⁷ Cs				241	Расстояние		
Населенный Кол-во		$A_{_{MUH}}$		Амакс		$A_{_{MUH}}$		A _{макс}		до ЧАЭС,
пункт	проб (п)	Бк/кг	кБк/м²	Бк/кг	кБк/м²	Бк/кг	кБк/м²	Бк/кг	кБк/м ²	КМ
Звеняцкое	3	820	170	899	179	3,0	0,6	7,2	1,9	49
Ивановка	2	1405	322	1669	434	14,2	3,3	15,2	4,0	48
Стреличево	7	415	94	1051	270	1,3	0,3	6,3	1,5	50

0		1
Окончание	таолины	-1

		¹³⁷ Cs				241	Расстояние			
Населенный Кол-во		$A_{_{MUH}}$		Амакс		$A_{_{ ext{MUH}}}$		A _{макс}		до ЧАЭС,
пункт	проб (п)	Бк/кг	кБк/м²	Бк/кг	кБк/м²	Бк/кг	кБк/м ²	Бк/кг	кБк/м ²	КМ
Новоселки	5	489	134	1316	374	1,7	0,5	14,1	4,0	50
Тульговичи	2	2006	426	1796	381	2,8	0,6	5,5	1,2	53
Вить	5	284	73	894	158	2,7	0,7	16,1	2,9	60

Граница Полесского государственного радиационно-экологического заповедника
Граница Хойникского района
Чернобыльская АЭС

Рисунок 1 — Расположение населенных пунктов Хойникского района Гомельской области Беларуси относительно зоны отселения ПГРЭЗ и ЧАЭС

Результаты показали, что плотность загрязнения почвы 241 Am на территории обследованных населенных пунктов Хойникского района не превышала 4 кБк/м², при этом плотность загрязнения 137 Cs на один — два числовых порядка величины выше и варьировала в диапазоне от $30 \, \text{кБк/м²}$ до $500 \, \text{кБк/м²}$. Удельная активность почвы 241 Am не превышала $10 \, \text{Бк/кг}$ в большинстве из $30 \, \text{пунктов}$, за исключением трех населенных пунктов — Ивановка, Новоселки и Вить.

Содержание 241 Аm в продуктах питания не регламентируется нормативными документами в Республике Беларусь, однако анализ возможного поступления этого радиоизотопа в организм человека характеризуется высокой степенью значимости с точки зрения радиационной защиты населения в ситуации существующего облучения. Данные таблицы 2 свидетельствуют, что содержание 241 Аm во всех пробах продуктов питания, ото-

бранных на территории Хойникского района, на три порядка величины ниже удельной активности ¹³⁷Cs. Известно, что коэффициент накопления радионуклидов в культурные растения до 100 раз больше, чем дикорастущие, поскольку выполнение сельскохозяйственных операций по возделыванию культур сопровождается более интенсивным пылеобразованием и дополнительным поступлением радионуклидов на листовую поверхность растений [2].

Согласно требованиям нормативных правовых актов Республики Беларусь по содержанию ¹³⁷Cs в пищевых продуктах и сельскохозяйственном сырье во всех пробах продуктов питания из частного сектора района (таблица 2) по результатам 2018 г. не зафиксировано превышений предельных значений.

Оценка вклада ¹³⁷Сs и ²⁴¹Аm в дозы внутреннего облучения населения представлена в таблице 3. Для оценки ингаляционного пути поступления данных радионуклидов были использованы коэффициенты ресуспензии, характеризующие влияние сельскохозяйственных операций при выполнении полевых работ [2].

Оценка ожидаемых доз внутреннего облучения жителей населенных пунктов Хойникского района (таблица 3) при производстве и потреблении продуктов питания на личном подворье свидетельствует, что максимальные эффективные дозы от ингаляционного поступления 241 Am варьируют в пределах 0,006-0,038 мЗв/год и на один – два порядка величины превышают дозы от ингаляционного поступления ¹³⁷Cs. Ожидаемая доза внутреннего облучения населения района от ¹³⁷Cs в основном образуется пероральным путем, а ингаляционная составляющая в годовой дозе внутреннего облучения жителей от данного радионуклида не превышает 0,2 %. Структура дозы внутреннего облучения за счет поступления ²⁴¹Am существенно отличается от структуры дозы за счет поступления ¹³⁷Cs. Наблюдаемые уровни ²⁴¹Am в почве обследованных населенных пунктов района могут обусловить 85–98 % дозы внутреннего облучения жителей за счет ингаляционного поступления суммы радионуклидов ²⁴¹Am и ¹³⁷Cs при выполнении полевых работ на приусадебных участках.

Таблица $2 - {}^{137}$ Cs и 241 Am в местных продуктах питания Хойникского района

Посология ж типит	Пистина	¹³⁷ Cs*	²⁴¹ Am*	
Населенный пункт	Продукт	Бк/кг	мБк/кг	
Звеняцкое	Картофель	1,5±0,5	1,6±0,4	
Ивановка	Перо лука	2,2±0,6	5,9±1,2	
Новоселки	Зерно пшеницы	10,2±1,3	7,9±1,6	
	Картофель	<1,0	1,3±0,3	
	Морковь	2,4±0,3	5,6±1,1	
Вить	Свекла	1,4±0,6	7,3±1,3	
	Листовой салат	2,2±0,8	8,1±2,0	
	Перо лука	1,5±1,0	7,6±1,7	
	Картофель	2,8±0,8	1,5±0,3	
	Морковь	2,8±0,9	2,1±0,6	
Стреличево	Свекла	2,0±0,6	56,8±7,8	
	Листовой салат	1,3±0,7	1,8±0,4	
	Перо лука	1,2±1,1	1,7±0,4	

Окончание таблицы 2

По осточну ў тупут	Пеодумя	¹³⁷ Cs*	²⁴¹ Am*		
Населенный пункт	Продукт	Бк/кг	мБк/кг		
	Картофель	11,2±1,8	2,2±0,5		
	Морковь	14,9±2,2	5,1±1,0		
Тульговичи	Свекла	2,7±0,8	5,8±1,1		
	Листовой салат	1,9±1,0	3,5±0,7		
	Перо лука	1,7±1,0	2,8±0,8		

^{*}Удельная активность радионуклидов в местных продуктах определена на натуральную массу (сырой вес).

Таблица 3 – Оценка максимальной ожидаемой эффективной дозы внутреннего облучения от 137 Cs и 241 Am для населения Хойникского района, мЗв/год

		¹³⁷ Cs		²⁴¹ Am			
Населенный пункт	пищевая	ингаляция	сумма	пищевая	ингаляция	сумма	
	цепочка	ингалиции		цепочка			
Звеняцкое	0,52	0,0008	0,521	0,0005	0,019	0,020	
Ивановка	1,00	0,0011	1,001	0,0009	0,030	0,031	
Новоселки	0,81	0,0013	0,811	0,0009	0,038	0,039	
Вить	0,52	0,0006	0,521	0,0010	0,026	0,027	
Стреличево	0,62	0,0010	0,621	0,0004	0,014	0,014	
Тульговичи	1,20	0,0015	1,202	0,0004	0,012	0,012	

Заключение

В Хойникском районе на современном этапе ситуации существующего облучения доминирует пероральный путь поступления 137 Cs, который может обусловить 93–99 % ожидаемой суммарной дозы внутреннего облучения жителей района. Наблюдаемые уровни присутствия ²⁴¹Am в продуктах питания местного производства могут привнести не более 0,3 % в дозу внутреннего облучения от поступления суммы радионуклидов ²⁴¹Ат и ¹³⁷Сѕ пероральным путем. По результатам исследований 2018 г. в шести из тридцати обследованных пунктов района максимальная ожидаемая доза внутреннего облучения от ¹³⁷Cs для жителей превышала 1 мЗв/год. В то же время доза внутреннего облучения от ²⁴¹Am была сформирована преимущественно ингаляционным путем и не превышала 0,04 мЗв/год.

Соблюдение гигиенических требований (промыв зеленых культур, очистка от кожуры корнеклубнеплодов) может сократить нежелательное поступление альфа-излучающего ²⁴¹Am в рацион жителей по пищевой цепочке. Ограничение полевых работ в сухой период, которые сопровождаются большим пылеобразованием и попаданием радионуклидов в зону дыхания, является резервом для сокращения поступления радиоизотопов в организм ингаляционным путем.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Алексахин, Р. М. Радиоэкология и авария на Чернобыльской АЭС / Р. М. Алексахин, Н. И. Санжарова, С. В. Фесенко // Атомная энергия. -2006. - Т. 10, № 4. - С. 267–276.

 $2.^{241}$ Ат и 137 Сs на территории Хойникского района Беларуси: оценка радиоэкологической обстановки на современном этапе ситуации существующего облучения / Е. К. Нилова [и др.] // Радиационная гигиена. -2021. -№ 4. -C. 17-30. doi: 10.21514/1998-426X-2021-14-4-17-30

УДК 159.9:[614.8:316.613.4]

В. И. Бронский¹, С. В. Толканец¹, К. В. Бронская²

¹Учреждение образования «Гомельский государственный медицинский университет»,
²Государственное учреждение «Республиканский научно-практический центр радиационной медицины и экологии человека»
г. Гомель, Республика Беларусь

РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ СОЦИАЛЬНО СТРЕССОВОЙ ПРОБЛЕМАТИКИ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ С ДЛИТЕЛЬНЫМ ТЕЧЕНИЕМ

Здоровье человека по ВОЗ определяется состоянием полного физического, душевного и социального благополучия, а не только отсутствием болезней и физических дефектов. При чрезвычайных ситуациях здоровье должно оцениваться в совокупности этих трех составляющих. В чрезвычайных ситуациях условия усугубляются негативными последствиями проводимых защитных мероприятий, что приводит к нарушениям жизненного стереотипа и, прежде всего, психической адаптации. Срыв механизмов адаптации приводит к развитию социально-стрессовых расстройств [1]. Эта концепция возникла после чернобыльской катастрофы и масштабного роста нервно-психических расстройств, в том числе на интактных в отношении радиационного загрязнения территориях. В последующем В. Я. Семке (1992) и В. Н. Краснов (1994) развили эту проблематику в направление экологической психиатрии как научно-практической методологии при оценке здоровья при чрезвычайных ситуациях.

Методология экологической психиатрии подразумевает оценку антропогенных и опосредованных социально-психологическими факторов, включает оценку социального окружения, стрессового потенциала, стресс-индуцированных нервно-психических расстройств, а также ранжированную оценку факторов социального окружения, выражающих характеристики их восприятия, главными из которых являются фактор радиационной опасности при чернобыльской катастрофе (в скрининге населения на загрязненных территориях [2]) и фактор коронавирусной инфекции — при пандемии COVID-19.

При изучении радиационной проблематики учитывались показатели доз внутреннего облучения (радиоцезий), которые оказались низкими. При анализе показателей облучения использовалась концепция 100 мЗв одномоментно или в год, основанная на анализе всех крупных радиационных аварий [3]. Вероятность радиационной энцефалопатии возможна при облучении в дозах, превышающих 50 Зв. «Особенностью чернобыльской катастрофы явился высокий индекс вовлечения в аварию населения в сравнении с числом участников ликвидации и широкий социально-психологический резонанс