## УДК 618.1-002.72-055.25-07

# СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ДИАГНОСТИКИ УРОГЕНИТАЛЬНОГО МИКОПЛАЗМОЗА У ДЕВОЧЕК-ПОДРОСТКОВ

Захаренкова Т. Н., Барановская Е. И., Голубых Н. М.

Учреждение образования «Гомельский государственный медицинский университет», г. Гомель, Республика Беларусь

Учреждение образования «Белорусский государственный медицинский университет» г. Минск, Республика Беларусь

#### Введение

Вопросы о роли микоплазм в патологии урогенитального тракта вызывают многочисленные споры среди ученых разных специальностей уже более 20 лет. Колонизация новорожденных генитальными микоплазмами происходит во время беременности и при прохождении через родовые пути. В дальнейшем наблюдается усиление их коллонизации на фоне гормональных изменений в период полового созревания. Являясь условными патогенами *Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum* способны при определенных условиях, реализовать свои патогенные свойства и вызывать воспалительные заболевания мочеполовой системы. Заболевания, ассоциированные с урогенитальными микоплазмами, не имеют специфических клинических проявлений, в большинстве случаев протекают скрыто бессимптомно, с тенденцией к хронизации воспаления. Отсутствие своевременного этиологического лечения в детском возрасте приводит в дальнейшем к выраженным нарушениям репродуктивной функции. Для адекватного лечения урогенитальной инфекции необходима четкая этиологическая диагностика.

### Цель

Установить наиболее информативные приоритетные методы диагностики урогенитального микоплазмоза у девочек-подростков до начала половой жизни.

#### Методы исследования

На базе ЦНИЛ ГомГМУ педиатрического и кардиоревматологического отделений УЗ «Гомельская областная клиническая детская больница» проведено клиниколабораторное обследование 70 девочек-подростков до начала половой жизни в возрасте от 12 до 18 лет. Наличие микоплазм в урогенитальном тракте определяли культуральным методом с помощью набора Mycoplasma IST 2 (bioMerieux SA, Франция), методом ПЦР в режиме реального времени с использованием наборов реагентов «АмплиСенс М.genitalium-скрин-титр-FL» и «АмплиСенс ФлороЦеноз/Микоплазмы- FL» (ФГУН ЦНИИЭ Роспотребнадзора, РФ). Методом иммуноферментного анализа (ИФА) в сыворотке крови определяли специфических антител IgA и IgG к M. hominis и U.urealyticum с использованием тест-систем Mycoplasma hominis-IgA-ИФА-БЕСТ, Mycoplasma hominis-IgG-ИФА-БЕСТ, Ureaplasma urealyticum-IgA-ИФА-БЕСТ, urealyticum-IgG-ИФА-БЕСТ (ЗАО «Вектор-БЕСТ», Россия). Для статистической обработки количественных данных применялись методы вариационной статистики Фишера-Стьюдента с определением доли (р, %) изучаемого признака и стандартной ошибки доли (sp, %). Для установления значимости различий частот наблюдений при межгрупповом сравнении по долям рассчитаны критерии  $\chi^2$  и Фишера (односторонний вариант). Статистическая обработка данных производилась при помощи программы «Statistika» 6.0. Различия считали статистически значимыми при P < 0,05.

# Результаты и обсуждение

Так как урогенитальные микоплазмы внутриклеточные микроорганизмы, обладающие тропизмом к цилиндрическому эпителию урогенитального тракта, а в нашем

исследовании у девочек-подростков до начала половой жизни отсутствует возможность получения материала из цервикального канала шейки матки, основным биоматериалом для выделения микоплазм явились: моча, соскоб/мазок из уретры.

При исследовании у 70 девочек-подростков соскоба из уретры культуральным методом U. spp.(объединены биовары U. urealyticum и U. parvum) была выявлена у 18 (25,7  $\pm$  5,2 %) человек, у 17 (94,4 %) из них в диагностически значимых титрах ( $\geq$   $10^4$  КОЕ в образце), и у 1 (5,6 %) девочки — в титре <  $10^4$  КОЕ в образце.

М. hominis культуральным методом выделена у 5 (7,1  $\pm$  3,1 %) из 70 человек, из них в титре  $\geq$  10<sup>4</sup> КОЕ — у 1 (20 %) девочки, в титре < 10<sup>4</sup> КОЕ в образце — у 4 (80 %). Таким образом, у девочек-подростков при культуральном исследовании соскобного отделяемого слизистой уретры статистически значимо чаще выявляются U. spp., чем M. hominis (OR 4,5, 95 %CI 1,6-12,9; P = 0,005), причем значимо чаще в диагностически значимом титре ( $\chi^2$  = 8,7, P = 0,003). При всех выделениях M. hominis наблюдалась ее ассоциация с уреаплазмами.

При культуральном исследовании определена чувствительность выявленных у девочек-подростков штаммов микоплазм к антибиотикам. В 77,8 % случаев микоуреаплазмы были устойчивы к ципрофлоксацину, а при использовании офлоксацина для остановки роста в 83,3 % случаев понадобились максимальные концентрации антибиотика (4 мг/л против 1 мг/л, отвечающего параметру чувствительности). Невысокая эффективность отмечена и для эритромицина и азитромицина, чувствительность к которым микоуреаплазм составила по 55,6 %, что может быть связано с частым неадекватным использованием этих антибиотиков у детей. Не была выявлена устойчивость микоуреаплазм к доксициклину и джозамицину.

При исследовании методом ПЦР-РВ у 70 девочек-подростков уретральных соскобов и у 63 из них — образцов мочи наличие урогенитальных микоплазм диагностировано у 19 (27,1  $\pm$  5,3 %) из 70. Сравнение результатов обследования на микоплазмы методом ПЦР и культуральным методом представлено в таблице 1.

Таблица 1 — Сравнение результатов обследования девочек-подростков на урогенитальные микоплазмы культуральным методом и методом ПЦР (n = 70)

|            | Совпадение результата       |             |            | Несовпадение результата     |           |              |
|------------|-----------------------------|-------------|------------|-----------------------------|-----------|--------------|
| Микро-     | культурального метода и ПЦР |             |            | культурального метода и ПЦР |           |              |
| организм   | посев «+»                   | посев «-»   | итого %    | посев «-»                   | посев «+» | итого %      |
|            | ПЦР «+»                     | ПЦР «-»     | совпадения | ПЦР «+»                     | ПЦР «-»   | несовпадения |
| U. spp.    | 16 (22,9 %)                 | 49 (70 %)   | 92,9 %     | 4 (5,7 %)                   | 1 (1,4 %) | 7,1 %        |
| M. hominis | 1 (1,4 %)                   | 62 (88,6 %) | 90 %       | 3 (4,3 %)                   | 4 (5,7 %) | 10 %         |

Общее совпадение результатов при исследовании на U. spp. составляет  $92.9 \pm 3.1$  %. В исследованиях на наличие уреаплазменной инфекции в  $70 \pm 5.5$  % случаев наблюдается совпадение отрицательных результатов ПЦР и посевов (посев «—», ПЦР «—»), в  $22.9 \pm 5.0$  % случаев имеется совпадение положительных результатов (посев «+», ПЦР «+»).

Несовпадение результатов молекулярно-генетических и микробиологических методов отмечалось в  $7.1\pm3.1$  % случаев и приходилось на 1 случай вариант посев «+», ПЦР «-» и 4 случая посев «-», ПЦР «+».

Во всех случаях результата посев «-», ПЦР «+» при обследовании на U. spp. ДНК уреаплазм (3 случая U. parvum и 1 случай U. urealyticum) была выделена из образцов мочи, в то время, как исследование уретрального соскоба и культуральным и методом ПЦР-РВ дало отрицательный результат. Несовпадение при обследовании на U. spp., когда в посеве был выявлен низкий титр микроорганизма  $< 10^4 {\rm KOE}$  в образце, отрицательный результат ПЦР мог быть обусловлен недостаточным количеством материала в соскобе на ПЦР.

При сравнении результатов различных методов выявления M. hominis совпадение отрицательных результатов культурального метода и ПЦР составили  $88,6\pm3,8\%$  и только  $1,4\pm1,4\%$  — при положительных результатах. Ввиду того, что этот вид микоплазм достаточно редко встречался у девочек, общий процент совпадений велик и составил  $90\pm3,6\%$ . Несовпадение имеет место как в случаях отсутствия роста на средах и положительных в ПЦР  $(4,3\pm2,4\%)$ , что может быть при отсутствии жизнеспособных бактерий в соскобе, так и наоборот, ПЦР «—», посев «+»  $(5,7\pm2,8\%)$ . В последних 4 случаях M. hominis наблюдалась в ассоциации с U. spp. причем только в одном из 4 случаев в значимом титре  $\geq 10^4$  КОЕ в образце.

Методом ПЦР-РВ проведен анализ видовой принадлежности выделенных уреаплазм и определена нормированная концентрация ДНК (число гено-эквивалентов на 100 тыс. клеток эпителия), что не представлялось возможности при культуральном исследовании (таблица 2).

Таблица 2 — Нормированная концентрация ДНК различных видов микоплазм, выявленных в урогенитальном тракте девочек-подростков, Me (25,75 %),  $\lg \Gamma \Im /10^5$  клеток

| Биологический материал | U. parvum               | U. urealyticum | M. hominis     | 3 вида микоплазм       |
|------------------------|-------------------------|----------------|----------------|------------------------|
| Vnompouviš opovoč      | n = 16                  | n = 1          | n = 3          | n = 20                 |
| Уретральный соскоб     | 4,1 (3,8; 4,5)          | 4,4            | 3,0 (2,0;4,5)  | 4,1 (3,5;4,5)          |
| Моча                   | n = 15, 4,8 (4,4; 5,5)* | n = 2          | n = 3          | n = 20, 5,0 (4,5;5,5)* |
| Woda                   | Z = 2,63; $P = 0,009$   | 5,2 (5,1; 5,3) | 5,5 (4,3; 6,6) | Z = 3.18; $P = 0.002$  |

<sup>\*</sup> Статистически значимо больше концентрация, чем в уретральном соскобе (Р < 0,05).

При обследовании 62 девочек-подростков методом ИФА в сыворотке крови 37 девочек (59,7  $\pm$  6,2 %) выявлены антитела против M. hominis и U. urealyticum. Иммуноглобулины класса A к U. urealyticum не были обнаружены ни у одной пациентки. Выявленые варианты сочетания иммунологических маркеров у девочек-подростков представлены на рисунке 1.

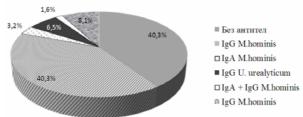



Рисунок 1 — Частота выявления и варианты сочетания антител против M. hominis и U. urealyticum

У 25 из 37 (67,6  $\pm$  7,7 %) девочек наблюдались только IgG к M. hominis в титре 1:5—1:20, что было значимо чаще, чем остальные варианты сочетания антител ( $P_1 < 0.001$ ,  $P_2 = 0.003$  и  $P_3 = 0.008$ ).

Для определения специфичности и чувствительности метода ИФА в диагностике урогенитального микоплазмоза проведено сравнения результатов ИФА и сочетанных данных культурального метода выделения микоплазм и ПЦР (таблица 3).

Таблица 3 — Вычисление чувствительности и специфичности ИФА при диагностике M. hominis

|                                                 | Есть рост и(или) выявлена ДНК микоплазм (положительный) (N=21) | Нет роста и ДНК микоплазм<br>(отрицательный) (N=42) |
|-------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| Выявлены специфические антитела (положительный) | 4                                                              | 28                                                  |
| Отсутствуют антитела (отрицательный)            | 2                                                              | 26                                                  |

Определить специфический иммунитет против наиболее часто встречающегося вида U. parvum не представляется возможным, так как отсутствуют ИФА тест-системы. В двух случаях выделения U. urealyticum специфические антитела выявлены не были. Проведен анализ чувствительности и специфичности ИФА метода для диагностики M. hominis.

$$_{\text{Чувствительность}} = \frac{4}{4+2} = 0,67 (67\%),$$
 $_{\text{Специфичность}} = \frac{26}{28+26} = 0,48 (48\%).$ 

Таким образом, метод ИФА в диагностике урогенитального микоплазмоза, обусловленного M. hominis у девочек-подростков обладает низкой чувствительностью и низкой специфичностью.

### Выводы

- 1. Наиболее адекватными лабораторными методами идентификации и количественного выявления различных видов микоуреаплазм у девочек подростков до начала половой жизни являются: культуральный, при котором U. spp. определяется у  $25,7 \pm 5,2 \%$ , M. hominis у  $7,1 \pm 3,1 \%$  и ПЦР в реальном времени, при котором у  $27,1 \pm 5,3 \%$  девочек обнаружена ДНК микоплазм.
- 2. При сравнении результатов культурального метода и метода ПЦР-РВ для выявления урогенитальных микоплазм общее совпадение результатов составляет  $90 \pm 3.6$  % для M. hominis и  $92.9 \pm 3.1$ % для U. spp., при этом оба метода позволяют определить диагностически значимые титры микроорганизмов.
- 3. Преимуществами метода ПЦР-РВ является возможность идентификации разных биоваров уреаплазм и их точная нормированная концентрация в биологическом материале. Преимущества культурального метода: определение чувствительности микроорганизмов к антибиотикам.
- 4. Биологическим материалом, репрезентативным для выделения мико- и уреаплазм у девочек-подростков, является отделяемое уретры, моча (первая утренняя порция). Причем в моче наблюдаются более высокие концентрации ДНК микоуреаплазм.
- 5. У девочек-подростков до начала половой жизни методом ИФА в сыворотке крови определяются антитела против M. hominis и U. urealyticum в  $59,7 \pm 6,2$  % случаев. Статистически значимо чаще выявляются IgG к M. hominis в титре 1:5-1:10, чем остальные варианты сочетания антител (P1 < 0,001, P2 = 0,003 и P3 = 0,008). Данный метод обладает низкой чувствительностью (63,8 %) и низкой специфичностью (48 %) и не может быть рекомендован в диагностике урогенитального микоплазмоза у девочек-подростков.

## УДК 581.1; 611.36

# ИССЛЕДОВАНИЕ ВЛИЯНИЯ БЕРБЕРИНА НА ТИОЛ-ДИСУЛЬФИДНЫЙ СТАТУС КРОВИ И ПЕЧЕНИ КРЫС

Зверинский И. В., Зверинская Н. Г., Янкевич Н. В., Поплавский В. А.

ГНУ «Институт биоорганической химии НАН Беларуси» Гродненский филиал, г. Гродно, Республика Беларусь

# Введение

В настоящее время редокс-потенциал клетки рассматривается с позиции фармакологической «мишени», это связано с тем, что редокс-зависимые процессы в значительной степени влияют на функциональную активность многих белков, участвующих в таких клеточных процессах, как деление, дифференцировка и апоптоз. Особое внимание привлекает изучение тиол-дисульфидной регуляции [1]. В этой связи поиск эффективных клеточных регуляторов данных процессов является одним из перспективных направлений в разработке новых противоопухолевых препаратов [2].

Исходя из литературных данных и наших собственных исследований, в роли подобного регулятора может выступать изохинолиновый алкалоид берберин [3, 4].