Благодаря наличию у модифицированной полипропиленовой нити ионообменных свойств, что позволяет больше и дольше «удерживать» антибиотик, отмечается длительное сохранение антибактериальной активности (7 суток) (таблица 1).

Таблица 1 — Антибактериальная активность полипропиленовых нитей

Нити	Средние значения зон задержки роста, мм				
пити	без вымачивания	1 сутки	3 суток	7 суток	
ПП + АБ	18	12	29	38	
Контроль 1	4	0	0	0	
Контроль 2	0	0	0	0	

Таблица 2 — Антибактериальная активность нитей из полигликолевой кислоты

Нити	Средние значения зон задержки роста, мм				
пити	Без вымачивания	1 сутки	3 суток	7 суток	
ПГК + АБ	33	21	36	40	
Контроль 1	16	0	0	0	
Контроль 2	0	0	0	0	

Увеличение зоны задержки роста на 3 и 7 сутки вероятно связано с особенностями ионообменных свойств модифицированного шовного материала и требует дальнейшего исследования.

Опыт № 2. В результате исследования выявлено антибактериальное влияние модифицированного шовного материала в отношении Е. coli. После 24-часовой экспозиции исследуемого материала процент редукции КОЕ для полипропиленовых нитей составил 99,7 %, а для нитей из полигликолевой кислоты — 99,9 %.

Заключение

Модифицированные хирургические нити из полипропилена и из полигликолевой кислоты после вымачивания в растворе антибиотика длительно обладают антибактериальной активностью в отношении E. coli.

По данным исследований in vitro, исходная антибактериальная активность нитей на твердой питательной среде проявлялась для полипропиленовых нитей в зоне до 18 мм вокруг нитей, для нитей из полигликолевой кислоты — 33мм, что вполне перекрывает расстояние между соседними швами в ране.

Модифицированные нити из полипропилена и из полигликолевой кислоты более длительно сохраняют антибактериальную активность, чем не модифицированные аналоги (7 суток) — что вполне достаточно для заживления раны.

ЛИТЕРАТУРА

- 1. *Буянов, В. М.,* Хирургический шов / В. М. Буянов, В. Н. Егиев, О. А. Удотов. М.: График Груп, 2000. 93 с.
- 2. *Байчоров*, Э. Х. Современный шовный материал, применяемый в хирургии / Э. Х. Байчоров, Л. М. Дубовой, А. Д. Пасечников // Здоровье системное качество человека: сб. науч. ст. Ставрополь, 1999. С. 328–334.
 - 3. *Тец, В. В.* Микроорганизмы и антибиотики. Сепсис / В. В. Тец. СПб.: Эскулап, 2003. 154 с.

УДК 612.014.464+611.127]:577.127.4-092.9

ПОТРЕБЛЕНИЕ КИСЛОРОДА И ПОКАЗАТЕЛИ ТКАНЕВОГО ДЫХАНИЯ МИОКАРДА БЕЛЫХ КРЫС ПРИ ПОСТУПЛЕНИИ АНТИОКСИДАНТНОГО КОМПЛЕКСА ВИТАМИНОВ

Коваль А. Н., Сергеенко С. М., Грицук А. И.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Кислород, потребляемый организмом, расходуется на митохондриальные, микросомальные и пероксидные процессы. При этом на митохондриальное окисление, необ-

ходимое для энергообразования такой аэробной ткани, как миокард, расходуется до 85 % всего кислорода. Наличие эффекта разобщения окислительного фосфорилирования при дисбалансе нутриентов и кислорода является защитным механизмом, предотвращающим генерацию активных форм кислорода. При этом отмечается увеличение потребления кислорода тканями [3].

Цель исследования

Сравнение показателей митохондриального дыхания миокарда и внешнего дыхания при добавлении в рацион белых крыс растительного масла и антиоксидантного комплекса витаминов.

Методы исследования

В работе использовались беспородные белые крысы массой 220–250 г. Животные были распределены на контрольную и две экспериментальные группы, которым в рацион добавляли компоненты, согласно таблицы 1.

Таблица 1 — Экспериментальные группы животных

Группа животных	Условия закорма животных
Контроль	Стандартный рацион вивария
Группа «АОК»	Витамины (разовая доза): С — 0,2; А — 0,002; Е — 0,08 мг/г веса крысы
Группа «Масло»	Растительное подсолнечное масло (0,002 мл/ г веса крысы)

Введение витаминов и масла осуществлялось пятикратно (через день) перорально. При этом жирорастворимые витамины вводились в виде раствора в растительном масле, витамин C – в виде водного раствора [1, 5].

Измерение потребления кислорода и выделения углекислого газа животными (в ммоль/(мин × г) проводилось с использованием инфракрасного газового анализатора GA 94A компании Keison Products, Великобритания (Институт Леса НАН РБ). Объем газометрической камеры 7,7 л. Температура в помещении 18 °С. Для оценки путей потребления кислорода использовался показатель «дыхательный коэффициент» (отношение скорости выделения углекислого газа к скорости потребления кислорода).

Измерение скорости потребления кислорода и показателей тканевого дыхания препаратами миокарда проводилось полярографическим методом по ранее описанной методике [2]. Измерялись скорости дыхания на эндогенных субстратах ($V_{\text{энд}}$) при внесении субстратов — янтарной и глутаминовой кислот ($V_{\text{як}}$, $V_{\text{глу}}$) и разобщителя дыхания и фосфорилирования — 2, 4-динитрофенола (ДНФ) — $V_{\text{днф}}$. На основе полученных скоростей рассчитывались показатели стимулирующего действия субстратов (СД_{як}, СД_{глу}) и ДНФ (СД_{лнф}).

Статистическая обработка полученных результатов производилась с использованием непараметрического критерия Манна-Уитни [4].

Результаты измерений газообмена приведены в таблице 2.

Таблица 2 — Результаты потребления кислорода и выделения углекислого газа животными

	Группа	n	O_2 (ммоль/(мин×г))	$CO2$ (ммоль/(мин \times г))	Дыхательный коэффициент
	Контроль	10	$2,040 \pm 0,142$	$1,967 \pm 0,110$	$0,981 \pm 0,046$
Γ	Группа «АОК»	4	$2,385 \pm 0,206$	$2,139 \pm 0,172$	$0,898 \pm 0,008$
Γ	Группа «Масло»	4	$2,679 \pm 0,254*$	$2,623 \pm 0,148*$	$0,993 \pm 0,050$
L	17	4	, , -	2,023 ± 0,146	0,333 ± 0,030

^{*} p < 0.05, ** p < 0.01, *** p < 0.001.

В экспериментальных группах отмечается увеличение потребления кислорода и выделение углекислого газа по сравнению с контрольной группой, достигая значимых различий в группе «Масло». Предположительно, наблюдаемый эффект отражает усиление потребления кислорода в отдельных органах.

Исследование скорости потребления кислорода препаратом миокарда показало, что наблюдается существенное усиление дыхания на 64,6 % на эндогенных субстратах при добавлении в рацион масла (группа «Масло»). В группе «АОК» также отмечалось статистически незначимое увеличение потребления кислорода. Остальные показатели дыхания оставались практически без изменений (таблица 3).

Таблица 3 — Скорость потребления кислорода миокардом белых крыс при внесении субстратов и ингибиторов митохондриального дыхания

Показатель	n	Контроль	«Масло»	% от контр	«АОК»	% от контр
$V_{_{\mathrm{ЭНД}}}$	18 ÷ 30	$5,06 \pm 0,63$	$8,33 \pm 0,39***$	164,6	$5,62 \pm 0,43$	111,1
V_{sk}	4 ÷ 6	$11,58 \pm 2,60$	$11,06 \pm 0,70$	95,5	$8,52 \pm 1,17$	73,6
$V_{\text{глу}}$	8 ÷ 12	$8,97 \pm 1,72$	$10,51 \pm 0,63$	117,2	$6,68 \pm 0,45$	74,5
$V_{{ m д}{ m h}{ m \varphi}}$	4 ÷ 6	$8,41 \pm 0,99$	$10,30 \pm 0,99$	122,5	$9,82 \pm 0,56$	116,8

*** p < 0,001.

При анализе показателей митохондриального дыхания миокарда отмечается уменьшение $CД_{як}$ в обеих группах, при значимых различиях в группе «Масло». Возможным объяснением этому феномену является тот факт, что окисление янтарной кислоты сукцинатдегидрогеназой конкурирует с ацил-КоА-дегидрогеназной реакцией β -окисления жирных кислот. В то же время окисление глутаминовой кислоты происходит практически без изменений, на что указывает стабильная величина $CД_{глу}$. По-казатель $CД_{днф}$ также существенно не изменяется, что позволяет исключить разобщение окисления и фосфорилирования в миокарде жирными кислотами при указанных количествах масла в рационе белых крыс (таблица 4).

Таблица 4 — Показатели митохондриального дыхания миокарда белых крыс при внесении субстратов и ингибиторов

Показатель	n	Контроль	«Масло»	% от контр	«АОК»	% от контр
СДяк	4÷6	$4,89 \pm 1,26$	$1,44 \pm 0,09**$	29,4 %	$1,87 \pm 0,14$	38,2 %
СДглу	8÷11	$1,32 \pm 0,06$	$1,20 \pm 0,03$	90,9 %	$1,32 \pm 0,07$	100,0 %
СДднф	4÷6	$1,38 \pm 0,16$	$1,26 \pm 0,05$	91,3 %	$1,48 \pm 0,19$	107,2 %

^{**} p < 0,01.

Обращает внимание эффект более умеренного потребления кислорода при добавлении в рацион белых крыс антиоксидантного комплекса, наблюдаемый и при изучении газообмена, и при исследовании митохондриального дыхания в сравнении с группой «Масло» (таблица 2, 3). Предположительно, это явление можно объяснить регуляцией метаболизма на уровне генома (жирные кислоты являются лигандами РРАКу, а ретиноевая кислота — ряда ядерных рецепторов).

Выводы

- 1. При введении в рацион животных растительного масла и антиоксидантного комплекса отмечено возрастание потребления кислорода и выделения углекислого газа в обеих экспериментальных группах животных, с более значимыми различиями в группе «Масло».
- 2. Повышение скорости дыхания на эндогенных субстратах и уменьшение СД $_{\rm як}$ в миокарде можно объяснить конкуренцией сукцинатдегидрогеназы и системы β -окисления жирных кислот.
- 3. Внесение антиоксидантного комплекса предотвращает значительное увеличение потребления кислорода, вызванное добавлением в рацион животных растительного масла.

Выражаем благодарность кандидату сельскохозяйственных наук А. Н. Никитину за оказанную помощь в проведении эксперимента.

ЛИТЕРАТУРА

- 1. Γ рицук, А. И. Влияние витаминов А, Е, С на дыхательную активность лимфоцитов селезенки / А. И. Грицук [и др.]// Вопросы питания. Т. 77, № 1. 2008. С. 26–29.
- 2. Грицук, А. И. Тканевое дыхание печени крыс при облучении в сверхмалых дозах инкорпорированными радионуклидами цезия / А. И. Грицук, С. М. Сергеенко, А. Н. Коваль // Авиакосмическая и экологическая медицина. № 5, 2002. С. 60–62.
- 3. Мрочек, А. Г. Цезий, митохондрии и проблемы кардиологии / А. Г. Мрочек, А. И. Грицук // Весці Нацыянальнай Акадэміі навук Беларусі. 2008, № 4. С. 63–75. (Медыцынскія навукі).
- 4. *Реброва, О. Ю.* Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica / О. Ю. Реброва. М., 2002. 312 с.
- 5. Сергеенко, С. М. Изменение показателей печени крыс при воздействии инкорпорации радионуклидов 137 цезия и антиоксидантного комплекса витаминов / С. М. Сергеенко, В. Т. Свергун, А. Н. Коваль // Экспериментальная и клиническая фармакология: Материалы III междунар. науч. конф., Минск, 23–24 июня 2009 г. / Ин-т фармакологии и биохимии НАН Беларуси; редкол.: П. Т. Петров [и др.]. Минск, 2009. С. 99–100.

УДК 577.1:37.022

ФОРМИРОВАНИЕ МЕЖПРЕДМЕТНЫХ СВЯЗЕЙ ПРИ ВВЕДЕНИИ НОВЫХ ЭЛЕМЕНТОВ В КУРСЕ ПРЕПОДАВАНИЯ БИОХИМИИ

Коваль А. Н.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Одним из принципов обучения в педагогике является дидактический принцип преемственности, последовательности и систематичности в обучении. Применение системного подхода к обучению позволяет более четко структурировать учебный материал и требует вычленения в изучаемом материале ведущих понятий и категорий, установления их связей с другими понятиями и категориями [3].

Следуя этому принципу, педагог должен использовать ряд дидактических правил:

- опираться на ранее усвоенные студентами знания;
- учитывать межпредметные связи (МПС), благодаря которым можно получить представление о характере рассмотрения того же вопроса другой близкой наукой [2].

Исходя из анализа понятия МПС, этот подход предполагает обнаружение главных элементов содержания образования, а также нахождение взаимосвязей между предметами. Организация учебно-воспитательного процесса на основе МПС может осуществляться на разных уровнях:

- при изучении предмета на обобщающих уроках;
- в рамках темы, подчинённой решению межпредметной проблемы;
- нескольких тем различных курсов;
- целого цикла учебных предметов;
- устанавливать взаимосвязь между циклами [1].

На нашей кафедре данный принцип и подход применяется при введении новых педагогических элементов в курс преподавания. Благодаря поддержке администрации нашего вуза в развитии информационных технологий, квалифицированной помощи сотрудников библиотеки, у преподавателей имеется возможность доступа к полнотекстовым статьям ведущих научных журналов в системе HINARI и других баз данных электронных библиотек, что способствует обогащению учебного материала новыми интересными фактами в области биохимии и смежных наук. При этом важной задачей профессорско-преподавательского состава кафедр является корректное включение инноваций с учетом уже имеющейся структуры учебного курса.

Цель работы

Показать на примере информации о регуляции углеводного метаболизма с помощью фактора TIGAR возможность внедрения нового учебного элемента в структуру учебного курса биохимии с формированием новых МПС.