7. Фактор свертывания крови VIII представляет собой комплекс свертываемости крови, образованный совместно с фактором Виллебранда. Определение коагуляционной активности активности фактора VIII используется для определения степени тяжести заболевания Виллебранда. Нормальные значения равняются 50-150 %. Ме группы 1 составила 31,5 %, что на 37 % ниже нормы, группы 2-35 %, что на 30 % ниже нормы. Значения 25-го процентиля составляет 15 % для 1 и 17,5 % для 2 группы, что на 70 и 65 % ниже нормы соответственно. Значения 75-го процентиля составляют 63 % для 1 группы (соответствует норме), и 40,15 % (на 19,7 % ниже нормы).

Результаты обработки и анализа данных контрольных групп методом медианы, с учетом пола пациентов, представлены в таблице 1.

Таблица 1 — Данные медианного анализа по исследуемым группам с учетом пола пациентов

Показатели гемостазиограммы (нормальные значения)	Группа 1 (n = 10)		Группа 2 (n = 8)	
	Me	25-й/75-й	Me	25-й/75-й
		процентили		процентили
A4TB, c (24–39)	43,9	37,3/57,7	42,55	35,7/58,75
ПТИ, % (0,7–1,2)	0,85	0,71/0,89	0,96	0,75/1
MHO, % (0,9–1,3)	1,11	1,07/1,21	1,03	1/1,23
TB, % (14–18)	17,15	15,7/18	16,75	15,45/17,5
vWF, % (50–150)	20,5	15/39	24	17,5/31
avWF, % (70-130)	22	16/39	19	16,5/24,5
Фактор свертывания VIII, % (50-150)	31,5	15/63	35	17,5/40,15

Выводы

В ходе проведенного исследования были изучены показатели гемостазиограмм пациентов, страдающих заболеванием фон Виллебранда. Было установлено, что значения ПТИ, МНО, ТВ находятся в пределах нормы при данном заболевании. Медианные и квартильные значения vWF, avWF, фактора свертывания VIII были значительно ниже нормы, что при дальнейшем исследовании может использоваться в качестве первичной диагностики.

ЛИТЕРАТУРА

- 1. Шабалов, Н. П. Детские болезни / Н. П. Шабалов. 3-е изд. СПб.: Питер Пресс, 2009. 928 с.
- 2. Воробьев, П. А. Руководство по гематологии / А. И. Воробьева. 3-е изд. М.: Ньюдиамед, 2005. 416 с.
- 3. Баркаган, 3. С. Диагностика и контролируемая терапия нарушений гомеостаза / 3. С. Баркаган, А. П. Момот. 3-е изд. М. : Ньюдиамед, 2008. 292 с.

УДК 612.121.2:[616.98:578.834.1]-036.88 ЗАВИСИМОСТЬ ЛЕТАЛЬНЫХ ИСХОДОВ ОТ ИЗМЕНЕНИЯ pH КРОВИ ПАЦИЕНТОВ С COVID-19

Кононков Г. В., Капитонов А. С.

Научный руководитель: преподаватель Е. Н. Рожкова

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

COVID-19 — острая респираторная инфекция, охватившая современную реальность. Заболевание может протекать как в легкой, так и в тяжелой форме. В РБ пациентов из других отделений изначально переводят в ОАиР (отделение анестезиологии и реанимации) с респираторными нарушениями дыхательной системы, что значительно снижает степень эффективного лечения и выживаемости [1].

Встречаемые респираторные нарушения у пациентов с COVID-19:

- 1. Респираторный алкалоз кислотно-щелочное расстройство, связанное с первичным снижением Р CO_2 , компенсаторным снижением уровня бикарбонат ионов, повышением уровня рН артериальной крови. Причиной является резкое повышение уровня выведения CO_2 . При заболевании COVID -19 является предиктом истощения респираторной системы, дыхательной мускулатуры, и как следствие может привести к гипоксии и респираторному ацидозу.
- 2. Респираторный ацидоз кислотно-щелочное расстройство, связанное с повышением Р CO_2 , компенсаторным увеличением уровня бикарбонат ионов, снижением уровня рН артериальной крови. Причинами являются патологии ЦНС или легких, а также ятрогенные состояния.

Анализ КЩС (кислотно-основное состояние) относится к категории экспресс-диагностики, выполняется в отделениях, где находятся больные в критическом состоянии. В этих условиях анализ КЩС должен быть проведен срочно, от его результатов зависят процедуры, определяющие жизнь или гибель пациента. Анализ представляет собой определение соотношения концентрации ионов водорода и гидроксильных групп в биологических жидкостях организма (предпочтительно определение по артериальной крови, т. к. она насыщена кислородом, ее газовый состав и метаболические параметры наиболее стабильны) [2].

Цель

Выявить зависимость летальных исходов от изменения pH крови пациентов с COVID-19.

Материал и методы исследования

Исследование было проведено среди тяжелых пациентов с подтверждённым диагнозом COVID-19 и сопутствующими респираторным нарушениями. Данные 30 пациентов, средний возраст которых составил 64 года, были предоставлены УЗ «Могилёвская больница № 1». Проводилась оценка анализа КЩС двух групп пациентов: 1 группа — переведенные в другие отделения (15 человек), 2 группа — скончавшиеся пациенты (15 человек).

Статистический анализ полученных данных осуществлялся с применением компьютерных программ «Microsoft Office Excel» и «Statistica» 10.0. Принимая во внимание, что распределение признаков не отличалось от нормального, данные были предоставлены в виде среднего значения. Сравнение между группами проводилось с использованием двустороннего критерия Стьюдента.

Результаты исследования и их обсуждение

В стационарах норма рН артериальной крови составляет 7,35–7,45. Основываясь на этих данных, можно установить респираторный диагноз пациента: респираторный ацидоз, респираторный алкалоз; респираторный алкалоз, переходящий в респираторный ацидоз, также нарушение может отсутствовать.

Данные исследования представлены в таблицах 1 и 2.

Таблица 1 — Показатели рН крови пациентов, переведенных в другие отделения

	Респираторный диагноз		
рН	респираторный алкалоз	отсутствует	
рН (при поступлении в ОАиР)	7,54 ± 0,05*	$7,37 \pm 0,03$	
рН (при наблюдении в ОАиР)	7,43 ± 0,02*	$7,4 \pm 0,02$	

По показателям из таблицы 1 можно сказать, что у пациентов, которые были переведены в другие отделения респираторные нарушение отсутствовали как при поступлении в реанимацию, так и при наблюдении (pH = 7.37 ± 0.03 ; 7.37 ± 0.03), либо встречалась менее тяжелая форма респираторного алкалоза (pH = 7.54 ± 0.05), который стабилизировали до нормы (7.43 ± 0.02), что свидетельствует о дальнейшем благоприятным протекании COVID-19.

Таблица 2 — Показатели рН артериальной крови умерших пациентов

	Респираторный диагноз			
pН	респираторный	респираторный	респираторный алкалоз-	
	ацидоз	алкалоз	респираторный ацидоз	
рН (при поступлении в ОАиР)	$7,28 \pm 0,15$	7,51 ± 0,03*	$7,52 \pm 0,07$	
рН (при наблюдении в ОАиР)	$7,15 \pm 0,17$	7,5 ± 0,04*	$7,26 \pm 0,1$	

^{*} — Достоверность различий респираторного алкалоза пациентов, переведенных в другие отделения от умерших пациентов при р < 0,05.

Из таблицы 2 следует, что в группе умерших пациентов также встречался респираторный алкалоз (pH = 7.51 ± 0.03), который не удалось стабилизировать к норме (7.5 ± 0.04), а также более тяжелые респираторные нарушения, такие как: респираторный ацидоз (pH = 7.28 ± 0.15 ; 7.1 ± 0.17) и респираторный алкалоз, переходящий в респираторный ацидоз (pH = 7.52 ± 0.07 ; 7.26 ± 0.1). Можно сказать, что пациенты с тяжелыми респираторными нарушениями не выживают.

Выводы

По вышеизложенным результатам исследования анализа КЩС пациентов с заболеванием COVID-19 можно сказать, что большинство пациентов с сопутствующими респираторными нарушениями дыхательной системы переводят в ОАиР несвоевременно, что значительно снижает выживаемость этих пациентов.

Для решения этой проблемы необходимо использование анализа КЩС на стадии прохождения лечения в других отделениях, для перевода пациентов на неинвазивную вентиляцию легких в положительный срок, чтобы предотвратить усталость респираторной системы и дыхательной мускулатуры, развитие гипоксии и респираторного ацидоза.

ЛИТЕРАТУРА

- 1. Диагностика и интенсивная терапия больных COVID-19: рук-во для врачей / под ред. С. С. Петрикова. М. : ГЭОТАР-Медиа, 2021.432 с.
- 2. Γ айтон, А. К. Медицинская физиология. Пер. с англ / А. К. Гайтон; под ред. В. И. Кобрина. М.: Логосфера, 2008. 1296 с.

УДК 612.172.2:159.9.072]-057.875

АНАЛИЗ ПОКАЗАТЕЛЕЙ КОРРЕКТУРНОЙ ПРОБЫ У СТУДЕНТОВ В ЗАВИСИМОСТИ ОТ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА

Коноплицкая Д. В., Рахуба П. С.

Научный руководитель: преподаватель Е. С. Сукач

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

В настоящее время определение ВСР признано наиболее информативным неинвазивным методом количественной оценки вегетативной регуляции сердечного ритма. Показатели ВСР отражают жизненно важные показатели управления физиологическими функциями организма — вегетативный баланс и функциональные резервы механизмов его управления. Анализируя ВСР, мы можем не только оценивать функциональное состояние организма, но и следить за его динамикой.

Для оценки свойств внимания в диагностической практике используется множество различных методик, но наиболее широкое распространение получила корректурная проба (Durchstreich — Test) или тест на вычеркивание. Методика впервые была предложена французским исследователем Б. Бурдоном в 1895 г. для исследования концентрации и устойчивости внимания [1]. Она позволяет определить колебания внимания, наличие утомляемости, реакцию на однообразные раздражители.