нившаяся кутикула эмали имеет неровную поверхность, местами с углублениями. Дентинные канальцы — с неровными, нечеткими границами, размещены реже, чем в гр. К. Отростки одонтобластов в просвете дентинных канальцев выглядят толще. Слой одонтобластов на периферии пульпы малоклеточный, клетки часто расположены беспорядочно. Пульпа коллагенизирована в большей степени, чем в гр. К, количество капилляров — уменьшено.

При морфометрическом исследовании подтверждено, что в пульпе зубов животных-потомков гр. ГК отмечается уменьшение количества одонтобластов. Причем сами одонтобласты и их ядра — крупнее по сравнению с гр. К (средняя площадь ядра одонтобласта в гр. К — 8.83 ± 0.76 мкм², а в гр. ГК — 13.17 ± 0.76 мкм², р < 0.001) Оптическая плотность цитоплазмы отростков одонтобластов в гр. ГК выше, чем в гр. К, т. е. плотность размещения РНК в них выше, а именно в гр. К — 0.183 ± 0.006 усл. ед. опт. пл., а в гр. Гк — 0.237 ± 0.005 усл. ед. опт. пл., р < 0.001.

Очевидно, что материнская гипокинезия в период вынашивания потомства обусловила менее активную пролиферацию одонтобластов с развитием их гипоплазии, что другие авторы наблюдали на костной ткани [2]. Вероятная компенсаторная полиплоидизация одонтобластов с компенсаторным повышением их морфофункциональной нагрузки нормализуют функцию на ограниченный период времени. Далее можно ожидать срыв компенсации с быстрым разрушением твердых тканей зубов, так как недостаточное функционирование одонтобластов приводит к недостаточной физиологической регенерации дентина.

Выводы

Полученные данные позволяют сделать вывод о том, что гипокинетические условия жизни матери в период вынашивания потомства приводят к появлению признаков гипопластичности зубного аппарата у взрослых потомков и предрасположенности их к кариесу.

ЛИТЕРАТУРА

- 1. *Чернышова, О. Н.* Гипокинезия во время беременности и степень ее влияния на формирование механизмов иммуносупрессии / О. Н. Чернышова, Л. Ф. Зюбанова, Э. Н. Будянская // Иммунология. 1998. № 4. С. 49–52.
 - 2. Влияние гипокинезии на систему мать-плод / Л. В. Серова [и др.] // Авиокосм. эколог. мед. 1999. № 33 (2). С. 5–9.

УДК:615.451.13:534.292

ОБРАЗОВАНИЕ ТБК АКТИВНЫХ ПРОДУКТОВ ИЗ СПИРТОВ ПОД ДЕЙСТВИЕМ УЛЬТРАЗВУКА

Бебешко А. В., Азаренок А. С., Козловский Д. А.

Научные руководители: к.б.н., доцент В. А. Игнатенко, к.х.н., доцент А. В. Лысенкова

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Ультразвуковые волны, распространяясь в среде, оказывают действие, как носитель энергии - прямое и опосредованное за счет образования активных частиц кислорода. По этой схеме действуют и другие высокоэнергетические излучения, например ионизирующее. Как известно, в этом случае опосредованное воздействие обусловлено образование из водных молекул радикалов кислорода. Поглощенная H₂O энергия приводит к образованию радикалов кислорода по схеме:

$$\begin{array}{c} \stackrel{W}{\longrightarrow} H_2O \rightarrow H_2O \stackrel{*}{\rightarrow} \stackrel{\bullet}{O}H + \stackrel{\bullet}{H} \\ \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{O}H + H^+ + e^- \end{array}$$

Аналогичные продукты ооразуются при действии ультразвука на воду.

Как известно при взаимодействии МДА являющегося продуктом перекисного окисления липидов (ПОЛ), инициатором которого являются радикалы кислорода, с двумя молекулами тиобарбитуровой кислоты (ТБК) при температуре 90–100 °C, образуется окрашенный триметиновый комплекс с максимумом поглощения при 532–535 нм (зеленый светофильтр). В связи с тем, что спирты являются очень хорошими перехватчиками радикалов, возникла потребность о проверки взаимодействия спиртов с ТБК.

Исследовали образование ТБК активных продуктов, образующихся из спиртов под действием ультразвука (УЗ).

Все эксперименты были проведены в атмосфере воздуха при нормальном давлении. Важной основой этого эффекта является наличие свободного кислорода в среде (кислородный эффект).

Материалы и методы исследования

В эксперименте использовались вещества: метанол, этанол, глицерин, ТБК, производитель всех веществ, Россия. Облучение растворов проводили ультразвуковым аппаратом УЗТ-1: частота 880 кГц, интенсивность изменяется от 0,1 до 2,0 Вт/см². Исследуемое вещество в пробирке, помещали на излучающую головку УЗ аппарата. Исследуемое вещество и излучающая ультразвук головка термостатируется водой.

ТБК активные продукты определяли по методике: в пробирки отбирали по 1 мл метилового, этилового спирта и глицерина, разводили дистиллированной водой в отношении 1:20. Данные растворы озвучивали и, собирая пробы соответственно через 10 мин, 20 мин и 30 мин действия УЗ, оставляя также контрольную не озвученную пробу. К растворам приливали 2 мл 0,75 % ТБК, вновь перемешивали. Пробирки помещали на кипящую водяную баню (15 мин). После охлаждения до комнатной температуры спектрофотометрировали на СФ-46 в кювете с рабочей длиной 10 мм при $\lambda = 532$ или 535 нм против контроля.

Результаты исследования

Пробы облученных УЗ спиртов при добавлении ТБК, и кипячении 15 минут давали розовую окраску с максимумом поглощения на $\lambda = 532$ нм, в диапазоне 530–536 нм что соответствует максимуму оптической плотности поглощения малонового диальдегида (рисунки 1, 2).

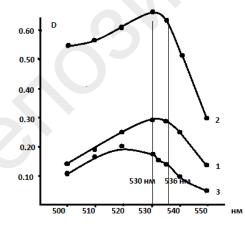


Рисунок 1 — Спектр поглощения ТБК активных продуктов полученных из растворов: 1 — метанола; 2 — этанола; 3 — глицерина под действием ультразвука интенсивностью 2 Вт/см², частота 880 кГц в течение 20 минут. Концентрация

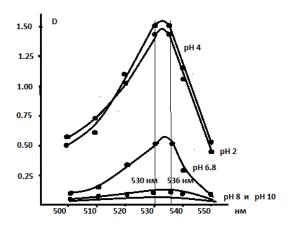


Рисунок 2 — Спектры поглощения ТБК активного продукта полученного из раствора этанола под деиствием ультразвука интенсивностью 2 Вт/см² частота 880 кГц в течение 15 минут для различных рН. Концентрация этанола

Оптическая плотность поглощения ТБК активного продукта действия ультразвука на спирты, пропорционально зависит от длительности действия ультразвука (рисунок 3).

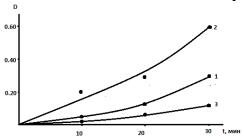


Рисунок 3 — Зависимость образования ТБК активных продуктов полученных из растворов: 1 — метанола; 2 — этанола; 3 — глицерина; под действием ультразвука интенсивностью 2 Bt/cm^2 частота 880 кГц в течение 10 минут, 20 минут и 30 минут, определяемой по оптической плотности поглощения ТБК активного продукта на λ = 535 нм. pH 5,6

В результате действия ультразвука выход ТБК активных продуктов увеличивается с ростом концентрации спирта (рисунок 4).

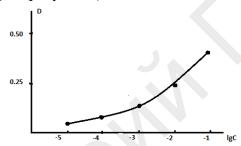


Рисунок 4 — Зависимость образования ТБК активного продукта из этанола под действием ультразвука интенсивностью 2 BT/cm^2 частота 880 к Γ ц в течение 20 минут от исходной концентрации этанола, определяемая по оптической плотности поглощения ТБК активного продукта на $\lambda = 535$ нм. pH 5,6

Выход ТБК активных продуктов под действием ультразвука зависит от рН озвучиваемой среды (рисунки 5 и 2).

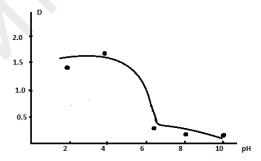


Рисунок 5 — Зависимость образования ТБК активного продукта из этанола под действием ультразвука интенсивностью 2 Вт/см² частота 880 кГц в течение 20 минут от рН, определяемая по оптической плотности поглощения ТБК активного продукта на λ = 535 нм. Концентрация этанола 0,5 мл в 20 мл растворителя

Выводы

В эксперименте получены новые данные об образовании ТБК активных продуктов из спиртов имеющие поглощение света на длине волны 532 нм при взаимодействии с радикалами кислорода, которые возникают в водных растворах под действием ультразвуковых волн. Результаты образования ТБК активных продуктов подтверждены в экс-

перименте по защите мембран эритроцитов этанолом от перекисного окисления в ультразвуковом поле и прямым действием ультразвука на растворы этанола [1] (рисунок 3).

ЛИТЕРАТУРА

1. ТБК-активные продукты перекисного окисления липидов эритроцитов в У3-поле и при наличии этанола / В. А. Игнатенко [и др.] // Проблемы здоровья и экологии. — 2012. — № 4 (34). — С. 117–122.

УДК: 616 - 058:616.12:656.2

РАСПРОСТРАНЕНИЕ НЕМОДИФИЦИРОВАННЫХ ФАКТОРОВ РИСКА ВОЗНИКНОВЕНИЯ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ СРЕДИ РАБОТНИКОВ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА УКРАИНЫ

Безуглая О.Р.

Научный руководитель: д.м.н., профессор А. Н. Очередько

Учреждение образования

«Винницкий национальный медицинский университет имени Н. И. Пирогова» г. Винница, Украина

Введение

Важным условием успешного функционирования железнодорожного транспорта Украины, который имеет огромное значение для государства, является сохранение здоровья и обеспечение профессионального долголетия работников.

По данным медицинского центра железнодорожного транспорта Украины, их работники чаще болеют болезнями сердечно-сосудистой системы и органов дыхания. В структуре общей заболеваемости 21,26 % приходится на болезни сердечно-сосудистой системы, 20,51 % — органов дыхания. Главной причиной госпитализации, инвалидности и смертности работников железнодорожного транспорта являются сердечнососудистые заболевания (ССЗ). Также следует обратить внимание на увеличение количества инсультов у работников данной профессиональной принадлежности.

Уровень ССЗ и смертности во многом зависит от эпидемиологической ситуации в конкретном регионе, а ее неблагополучия — от наличия и распространенности как болезни, так и ее факторов риска [1].

Доказано, что состояние здоровья населения на 49–53 % зависит от образа жизни, на 18–22 % обусловлен генетическими и биологическими факторами человека, еще на 17–20 % — состоянием окружающей среды, то есть, экологическими факторами. Медицинские факторы влияния на популяционное здоровье не превышают 8–10 % [2, 3].

Немодифицируемые факторы риска развития ССЗ — это факторы риска, которые нельзя устранить и изменить. К ним относятся: возраст (распространенность ССЗ увеличивается с возрастом), мужской пол (в возрасте до 40 лет ССЗ чаще встречается у мужчин, это преобладание прослеживается и в старших возрастных группах, хотя оно менее выражено), и отягощенный семейный анамнез, по ранним сердечно-сосудистым событиям (инфаркт, инсульт и др.) и наличие коронарных, цереброваскулярных и других сосудистых событий в анамнезе [4, 5].

Цель

Изучения распространенности немодифицированных факторов риска развития ССЗ у работников железнодорожного транспорта Украины.

Материалы и методы исследования

Нами на базе Узловой клинической больницы станции Винница было обследовано 103 работника ведущих профессий Юго-Западной железной дороги: монтеров пути,