

ведение лекарственной пробы с атропином. При отрицательной пробе с атропином, указывающей на функциональный характер нарушений, ограничений нет. Если количественные и качественные показатели XM соответствуют возрастной норме, ограничений в физической активности и занятий спортом нет. В некоторых случаях для оценки экспертных вопросов профессиональной пригодности действующих молодых спортсменов рекомендовано проведение адреналиновой пробы (уровень кардиологических отделений стационаров), которая позволяет оценить потенциальную опасность изменения фазы реполяризации на ЭКГ покоя.

Выводы:

- 1. При обнаружении у детей и подростков, занимающихся спортом, синдрома ранней реполяризации в нижних или боковых отведениях (особенно с выраженным изменением конечной части QRS), сочетающегося с клиникой и неадекватными физиологическими реакциями при нагрузочной пробе, необходимо ограничение физических нагрузок и отстранение от участия в соревнованиях.
- 2. Тактика врача-педиатра и детского кардиолога при обнаружении на ЭКГ СРРЖ при допуске детей к занятиям физкультурой и спортом, должна определяться на основании результатов клинических и функционально-диагностических исследований.

ЛИТЕРАТУРА

- 1. Детская кардиология и ревматология: практ. рук. / Л. М. Беляева [и др.]; под ред. Л. М. Беляевой. М.: Мед. информ. агенство, 2011. 584 с.
- 2. Дзяк, Γ . В. К вопросу о патогенезе СРРЖ / Γ . В. Дзяк, С. Л. Локшин // Вестн. аритмологии «Кардиостим-95». М., 1995. С. 71.
- 3. Загородный, Г. М. Дистрофия миокарда вследствие психофизического перенапряжения у спортсменов: метод. указания / Г. М. Загородный; БелМАПО, РДСМ. Минск, 2003. 28 с.
- 4. Национальные рекомендации по определению риска и профилактике внезапной сердечной смерти (Проект 2012 года) / Е. В. Шляхто [и др.]. 157 с.
- 5. Скуратова, Н. А. Значение тредмил-теста и кардиоинтервалографии в «спорных» вопросах допуска детей к занятиям спортом / Н. А. Скуратова, Л. М. Беляева // Проблемы здоровья и экологии. 2012. № 2. С. 95–99.

УДК 616-053.2-079.4:796

ФУНКЦИОНАЛЬНО-ДИАГНОСТИЧЕСКИЕ КРИТЕРИИ СПОРТИВНОГО СЕРДЦА

Скуратова Н. А.

Учреждение образования «Гомельский государственный медицинский университет», Учреждение «Гомельская областная детская клиническая больница» г. Гомель, Республика Беларусь

Введение

Термин «спортивное сердце» (СС) впервые ввел в литературу в 1899 г. немецкий ученый Непschen. Под этим понятием он подразумевал увеличенное в размерах сердце спортсмена и расценивал это явление как патологическое. Определение, данное Г. Ф. Лангом (1938) спортивному сердцу можно понимать двояко: 1) «Спортивное сердце» как сердце более работоспособное (в смысле способности удовлетворять, в результате систематической тренировки, более высокими требованиями, предъявляемым ему при усиленной и длительной физической работе), или 2) «Спортивное сердце» как сердце патологически измененное, с пониженной работоспособностью в результате чрезмерных напряжений спортивного характера. При этом он отметил, что переход от физиологического к патологическому «спортивному сердцу» нередко происходит постепенно и незаметно для спортсмена [1, 2]. Среди специалистов клинической медицины, под наблюдение которых попадают пациенты, регулярно занимающиеся профессиональной спортивной деятельностью, понятие «спортивное сердце» используется чаще, чем оно диагностируется на самом деле. Нередко данный термин отождествляется с

такими заболеваниями, как миокардиодистрофия хронического физического перенапряжения, «синдром спортивного сердца», стрессорная кардиомиопатия и другими структурными изменениями миокарда [2, 3, 5].

Цель

Проанализировать и обобщить литературные данные о функционально-диагностических критериях «спортивного сердца».

Материал и методы исследования

Проведен анализ литературных данных о функционально-диагностических критериях «спортивного сердца».

Результаты исследования и их обсуждение

Согласно мнению специалистов, спортивное сердце развивается реже, чем принято думать [5]. Оно является типичной находкой у спортсменов, тренирующихся на выносливость, и характеризуется физиологической, гармоничной эксцентричной гипертрофией всех камер сердца. У спортсменов, тренирующихся в скоростно-силовых видах спорта, СС обычно не развивается. Считается, что тренировки на выносливость в объеме пять часов в неделю и более, которые приводят к нагрузке сердечной мышцы объемом, способны привести к изменению размеров камер сердца. Объем тренировок значительно варьирует у разных лиц: так, бег по 60-70 км в неделю приводит к развитию СС лишь у некоторых спортсменов, в то время как у других лиц СС может и вовсе не развиться, даже если они пробегут до 100 км в неделю. Выявлено, что СС развивается чаще у бегунов на длинные дистанции, велогонщиков, лыжников, лиц, занимающихся триатлоном и др. С другой стороны, в скоростно-силовых видах спорта (например, тяжелоатлеты, гимнасты, спринтеры, метатели диска и копья и др.), СС, как правило, не развивается [2, 4, 5]. Эксцентричная гипертрофия миокарда должна быть равномерной (гармоничной) на фоне дилатации камер сердца, масса которого не превышает критическое значение 7,5 г/кг, что соответствует в среднем 500 г. В некоторых случаях, масса миокарда при СС может быть почти в два раза больше, чем у нетренированного, здорового человека.

Во время тренировки коэффициент потребления кислорода увеличивается в 10-12 раз у здоровых, нетренированных людей, и в 20 раз и более — у высококвалифицированных спортсменов, тренирующихся на выносливость. Ударный объем при нагрузке возрастает на 30-50 % [4, 5]. Динамические физические нагрузки вызывают повышение систолического артериального давления (АД), имеющего линейную зависимость от интенсивности ФН, при этом диастолическое АД изменяется лишь незначительно. Статические нагрузки, в частности, при максимальном мышечном напряжении вызывают гораздо больший прирост как систолического, так и диастолического АД. Функциональные изменения появляются уже в течение нескольких недель, что требует дополнительного расхода энергии, по крайней мере, от 500 до 1000 ккал в неделю, что соответствует, например, быстрой ходьбе в течение одного часа 2-3 раза в неделю. Регулярные аэробные тренировки снижают частоту сердечных сокращений и повышают ударный объем вследствие экономизации функции сердца. Вследствие улучшения динамики наполнения левого желудочка ударный объем увеличивается, периферическое сосудистое сопротивление и конечный диастолический объем снижаются. В связи с секрецией вазодилатационных веществ во время физических упражнений улучшается функция эндотелия [1, 2, 5].

Среди распространенных методов диагностики СС и других сердечно-сосудистых заболеваний являются электрокардиография (ЭКГ), эхокардиография (ЭхоКГ), нагрузочные пробы и лабораторные исследования [3, 4, 5]. К типичным изменениям на ЭКГ у спортсменов (более чем в 80 % случаев) относятся синусовая брадикардия, атриовентрикулярная блокада первой степени (АВБ), синдром ранней реполяризации желудочков. Последние являются результатом физиологической адаптации вегетативной нервной системы в ответ на спортивные нагрузки и отражают увеличение тонуса блуждающего нерва и (или) снижение симпатической активности. Кроме того, на ЭКГ высокотренированных спортсменов часто регистрируются вольтажные критерии гипертрофии левого желудочка (ГЛЖ), что является признаком физиологического ремоделирования миокарда левого желудочка. ЭКГ-паттерны физиологи-

ческой ГЛЖ у тренированных спортсменов, как правило, проявляются в виде изолированного увеличения амплитуды QRS-комплекса на фоне нормальной электрической оси сердца (ЭОС) и отсутствием нарушения процессов реполяризации (сегмента ST и зубца T) [3, 5]. «Невольтажные» критерии ЭКГ, такие как гипертрофия предсердий, отклонение ЭОС влево, нарушение реполяризации и нарушение проведения по желудочкам, как правило, не характерны для спортсменов и могут указывать на патологическую гипертрофию миокарда. Наличие изолированной депрессии сегмента ST на ЭКГ (либо в сочетании с инверсией зубца Т) требует дополнительного обследования спортсмена для исключения заболеваний сердца [4, 5].

Наиболее важным рутинным методом для дифференциации физиологической и патологической гипертрофии миокарда является эхокардиография. Нормальный сердечный объем зависит от массы тела и лежит в диапазоне 10–12 мл/кг у мужчин и 9–11 мл/кг у женщин. Конечный диастолический диаметр левого желудочка при СС увеличен и может составлять 60 мм или более у 15 % спортсменов, при этом толщина стенки левого желудочка находится в пределах нормы или на верхней части нормального диапазона (13–15 мм — у 2–4 % спортсменов) [4, 5]. Диаметр левого предсердия увеличивается у 20 % спортсменов, максимальное значение его может составлять до 50 мм у мужчин и до 45 мм у женщин. Физиологическое ремоделирование левого предсердия тесно связано с дилатацией левого желудочка. Таким образом, увеличение левого предсердия в основном диагностируется у спортсменов, тренирующихся в видах спорта, требующих выносливости и силы (например, гребля на байдарках) [5]. У здоровых спортсменов систолическая функция левого желудочка остается в пределах нормы в состоянии покоя. Фракция выброса может быть на нижней границе нормы [2, 5]. Считается, что продолжительные нагрузки на выносливость могут вызывать нарушение функции правого желудочка даже в большей степени, чем левого желудочка. Эхокардиографически регистрируемые признаки функциональных нарушений сердца являются преходящими, и в отличие от лиц с сердечно-сосудистыми заболеваниями, являются незначительными и клинически-незначимыми [1, 4, 5]. Опубликованные данные по эхокардиографии левого и правого желудочка и массы миокарда у спортсменов могут значительно колебаться вследствие различающихся групп лиц, видов спорта, методов обследования и методов измерения. Однако величины объемов и массы миокарда хорошо коррелируют с величиной максимального потребления кислорода (VO2max); в неясных случаях для объективной оценки функции миокарда рекомендовано проведение эргоспирометрии. Также установлено, что по данным магнитно-резонансной томографии (МРТ) имеют место более высокие значения размеров предсердий и желудочков и более низкие значения толщины стенок и массы миокарда, чем по данным эхокардиографии. Систолическая функция правого и левого желудочков по данным МРТ в 45 % находится на нижней границе нормы для левого и правого желудочка (таблица 1) [4, 5].

Таблица 1 — Эхокардиографические параметры спортивного сердца [5]

Сердечный объем (мл/кг)	Мужчины, 20	Женщины, 19
Масса миокарда (г/кг)	7,5	7
— Devereux	165-170	130
— Teichholz	135	135
— Dickhuth	137	137
КДД ЛЖ (мм)	63 (-67*1)	60 (-63*1)
КДД ЛЖ (мм/м² ППТ)	32	33
Толщина стенки ЛЖ (мм)	13 (-15*2)	12
Левое предсердие (мм)	45 (-50)	45
КДД ПЖ (мм)	32	32
КДД ПЖ (мм/м ² ППТ)	17	17

Примечание: *1 — верхний лимит индивидуален и соотносится с размерами тела; ППТ — площадь поверхности тела; *2 — 13–15 мм — «серая зона»

У здоровых спортсменов в состоянии покоя сердечные маркеры (тропонин и натрийуретический пептид (В-тип) находятся в пределах нормального диапазона, однако после изнурительных тренировок на выносливость данные маркеры могут транзиторно повышаться в незначительных пределах. У «неспортсменов» высокий уровень данных биомаркеров регистрируется только при инфаркте миокарда или при застойной сердечной недостаточности. По данным мета-анализа с участием более 1000 спортсменов, тренирующихся в видах спорта на выносливость установлено, что у 47 % из них после выполнения тренировок на выносливость (например, марафон или триатлон) было зарегистрировано повышение концентрации тропопонина. Более поздние исследования с использованием высокочувствительных тестов на тропонин выявили более высокий процент «тропонин-положительных» спортсменов после изнурительных тренировок на выносливость [3, 4, 5]. Нагрузочно-индуцированное увеличение концентрации тропонина у здоровых спортсменов, вызванное нагрузкой на выносливость, как правило, снижается в течение 24–48 часов (в крайнем случае, в течение 72 часов). Недавно появились сообщения о том, что имеется связь концентрации маркеров натрийуретического пептида (В-тип) или тропонина на высоте физической нагрузки и развитием дисфункции правого желудочка после длительных тренировок на выносливость, что может указывать на более значительное влияние физических нагрузок на выносливость на функцию правого желудочка [5].

Выводы:

- 1. Регулярные физические упражнения приводят к функциональным и структурным адаптационным изменениям, благоприятно влияющим на ССС.
- 2. С целью выявления функционально-адаптационных изменений со стороны ССС интенсивно-тренирующимся спортсменам требуется проведение ряда функционально-диагностических исследований кардиологического профиля.
- 3. Ввиду актуальности проблемы внезапной сердечной смерти во время занятий спортом, дебаты о наличии потенциальных патологических эффектов спортивной деятельности на ССС продолжаются, что диктует необходимость выявления возможных факторов риска и разработки рекомендаций.

ЛИТЕРАТУРА

- 1. *Беляева, Л. М.* Педиатрия. Курс лекций / Л. М. Беляева. М.: Мед. лит., 2011. 568 с.
- 2. Гаврилова, Е. А. Спортивное сердце: стрессорная кардиопатия / Е. А. Гаврилова. М.: Совет. спорт, 2007. 200 с.
- 3. Скуратова, Н. А. Спортивное сердце / Н. А. Скуратова // Проблемы здоровья и экологии. 2010. № 2. С. 71–74.
- 4. Cardiovascular Guidelines for Eligibility in Competitive Sports (COCIS 4th ed.) [in Italian] // Med. Sport. 2010. № 63. P. 5–136.
- 5. Scharhag Jürgen, Löllgen, Herbert, Kindermann, Wilfried Competitive Sports and the Heart: Benefit or Risk? // Jürgen Scharhag, Herbert Löllgen, Wilfried Kindermann. Dtsch. Arztebl. Int. Jan., 2013. № 110(1–2). P. 14–24.

УДК 612.13:797.21

ОСОБЕННОСТИ РЕГИОНАЛЬНОЙ ГЕМОДИНАМИКИ ПЛОВЦОВ В ПРЕДСОРЕВНОВАТЕЛЬНЫЙ ПЕРИОД

Сукач Е. С. 1 , Будько Л. $A.^{2}$, Кириллова М. $A.^{3}$

¹Учреждение образования «Гомельский государственный медицинский университет», ²Учреждение здравоохранения «Гомельский областной диспансер спортивной медицины», ³Учреждение образования «Гомельское государственное училище олимпийского резерва» г. Гомель, Республика Беларусь

Введение

Основная часть исследований гемодинамических состояний у спортсменов разных видов спорта в различных режимных условиях посвящена оценке работы сердца и центральной гемодинамики, так как адаптационные возможности сердечно-сосудистой системы спортсменов наибо-