

TSL 3: расшифровка, где единственная поддержка от одной EST. Транскрипты UROS: 207, 210.

TSL 5: расшифровка, в которой ни короткое плечо хромосомы не поддерживает структуру модели. Транскрипты UROS: 205, 206, 208, 211, 212.

4) APPRIS — это система аннотирования транскриптов с альтернативным сплайсингом на основе ряда вычисленных методов для индентификации наиболее функционально важных транскриптов гена.

APPRISP1 — предполагается, что транскрипты будут кодировать основную функциональную изоформу, основанную исключительно на основных модулях в данной системе аннотирования транскриптов. Характерно для одного транскрипта в болезни Гюнтера: UROS 204.

5) MANESelectv 0.92 — это транскрипт по умолчанию для человеческого гена, хорошо поддерживается, экспрессируется и высококонсервативен.

Для ряда белков известно явление множественности функций, или мунлайтинг (от англ. «moonlighting» — «дополнительная подработка»). Анализ взаимодействий гена UROS по базе данных TheBIOGRID [4] показывает наличие 13 таких взаимодействий на уровне белков («физическое взаимодействие») и 3 на уровне генов («генетическое взаимодействие»). При этом последнее характерно для генов SREBF2 (sterolregulatoryelementbindingtranscription factor 2), LDLR (lowdensitylipoproteinreceptor), FASN (fattyacidsynthase), принимающих участие в процессах регуляции липидного обмена на уровне синтеза холестерола, метаболизма липопротеидов низкой плотности и синтеза жирных кислот соответственно. Другие взаимодействия касаются процессов развития эктодермы у эмбрионов, аутофагии, системы убиквитинирования, синтеза глутатиона, регуляции транскрипции на стадии элонгации, регуляции цитольной тиоуридилазы, а также сигналинга по пути WNT1. Все эти взаимодействия указывают на иные функции гена UROS, которые не связаны непосредственно с активностью уропорфириноген III-синтетазы, что может быть использовано в дальнейшем для разработки методов коррекции и лечения болезни Гюнтера.

Выводы

Анализ образуемых геном UROS транскриптов указывает на наличие 21 варианта альтернативного сплайсинга, 17 из которых транслируются. Из описанных 16 взаимодействий гена UROS с другими генами и белками наиболее тесная связь прослеживается с метаболизмом липидов, процессов эмбрионального развития, аутофагии, сигналинга WNT1 и др., что может быть использовано для поиска перспективных средств лечения болезни Гюнтера.

ЛИТЕРАТУРА

- 1. Gross, U. Erythropoietic and hepatic porphyrias / U. Gross, G. F. Hoffmann, M. O. Doss // Journal of Inherited Metabolic Disease. 2000. Vol. 23. P. 641-661. 2. Online Mendelian Inheritance in Man An online catalog of human genes and genetic disorders. Mode
- of access: https://omim.org/. Date of access: 16.03.2021.
 3. Ensemble. Mode of access https://www.ensembl.org/Homo_sapiens/Gene/ Summary?db=core;g=ENSG00000188690;r=10:125784980-125823258. Date of access: 16.03.2021.
- 4. Database of Protein, Genetic and Chemical Interactions. Mode of access: https://thebiogrid.org/. Date of access: 16.03.2021.

УДК 577:612.122.1]-074

ГЛЮКОЗОТОЛЕРАНТНЫЙ ТЕСТ У БЕРЕМЕННЫХ

Ремова А. С., Мироненко Д. В.

Научный руководитель: старший преподаватель М. В. Громыко

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Во время беременности в организме женщины происходит большое количество перестроек, что вызвано необходимостью полноценного вынашивания ре-

бенка. К сожалению, часто бывает, что подобные изменения негативно сказываются на здоровье беременной женщины и требуют вмешательства врача. Для того, чтобы вовремя распознать и устранить такие негативные последствия беременности, женщина в обязательном порядке должна проходить регулярное медицинское обследование, в рамках которого исследуются многие функции организма, в частности, и обмен углеводов.

Всем беременным в обязательном порядке необходимо исследовать глюкозу в плазме венозной крови натощак в условиях лаборатории (на фоне обычной диеты и физической активности) при первом обращении в женскую консультацию или перинатальный центр не позднее 24 недели беременности.

Если результаты исследования соответствуют нормальным показателям во время беременности, то в обязательном порядке на 24–28 неделях беременности проводится пероральный глюкозотолерантный тест — ПГТТ («нагрузочный тест» с 75 г глюкозы) для выявления возможных нарушений со стороны углеводного обмена, но в основном, целью исследования является диагностика наличия или отсутствия гестационного сахарного диабета, который возникает у беременных [1].

ПГТТ является безопасным и единственным диагностическим тестом для выявления нарушений углеводного обмена во время беременности.

Пель

Проанализировать данные глюкозотолерантного теста у беременных, построить гликемические кривые и сравнить полученные результаты с нормой.

Материал и методы исследования

Для реализации поставленных целей были взяты архивные данные в учреждении «Гомельская центральная городская поликлиника» филиал № 8 женская консультация. Всего были проанализированы результаты ПГТТ восьми беременных. У беременных 3,7,8 — беременность первая (у беременных 3 и 7 — многоплодная), у остальных — вторая беременность. Статистическая обработка результатов проводилась при помощи компьютерной программы «Microsoft Excel 2016».

Результаты исследования и их обсуждение

По полученным архивным данным была составлена таблица 1. По результатам анализа показатели глюкозы в крови у всех беременных в норме.

	Натощак	Через 1 ч	Через 2 ч
Норма	<5,1	<10	<8,5
1.	4,53	7,2	4,3
2.	4,7	8,4	6,92
3.	3,87	6,59	4,6
4.	4,6	5,33	4,02
5.	4,02	4,29	4,22
6.	4,43	6,1	3,57
7.	4,55	7,28	4,93
8	4 44	8 36	5.01

Таблица 1 — Сравнительная характеристика гликемических показателей

Для дополнительного диагностического критерия были построены гликемические кривые [2]. Согласно графику, все показатели находятся в пределах нормы, однако уплощенная кривая беременной 5 указывает на гипогликемию. В анамнезе беременной — гипотиреоз, что и объясняет уплощение гликемической кривой.

Так же, проанализировав полученные данные, можно утверждать, что показатели гликемической кривой не зависят от того, первая это беременность или последующая, а также от того, является ли это одно- или многоплодной беременностью.

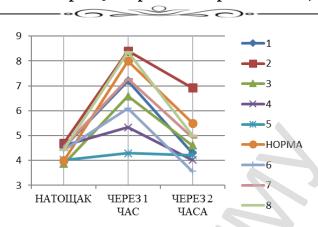


Рисунок 1 — Гликемические кривые

Выводы

Обобщая представленные данные, можно сделать вывод, что ПГТТ является неотъемлемой частью диагностики беременных. Гликемические кривые имеют важное клинико-диагностическое значение как для диагностики гестационного сахарного диабета, так и для состояний, связанных с гипогликемией беременных.

ЛИТЕРАТРА

- 1. Оценка показателей уровня глюкозы у беременных женщин различных функциональных типов конституции: материалы X юбилейного терапевтического форума «Актуальные вопросы диагностики и лечения наиболее распространенных заболеваний внутренних органов», Тюмень, 30 октября 2018 г. / Тюменский гос. мед. ун-т; под ред. И. В. Медведева [и др.]. Тюмень, 2018. 112 с.
- 2. Лабораторный практикум по биологической химии для студентов лечебного и педиатрического факультетов: учеб. пособие для вузов / О. А. Тимин [и др.]; под общ. ред. О. А. Тимин. Томск: Сибирский государственный медицинский университет, 2012. 258 с.

УДК 577:616.15]:616.894-053.8

АНАЛИЗ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ У ПАЦИЕНТОВ НЕВРОЛОГИЧЕСКОГО ОТДЕЛЕНИЯ КАЛИНКОВИЧСКОЙ ЦРБ С БОЛЕЗНЬЮ АЛЬЦГЕЙМЕРА

Савицкая В. В., Кавецкий А. Д.

Научный руководитель: к.б.н., доцент А. Н. Коваль

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Болезнь Альцгеймера (деменция альцгеймеровского типа) представляет собой наиболее распространенную форму первичных дегенеративных деменций позднего возраста, которая характеризуется постепенным малозаметным началом в пресенильном или старческом возрасте, неуклонным прогрессированием расстройств памяти и высших корковых функций вплоть до тотального распада интеллекта и психической деятельности в целом, а также характерным комплексом нейропатологических признаков [1]. Два отличительных патологических признака болезни Альцгеймера: внеклеточные бета-амилоидные отложения (в сенильных бляшках) и внутриклеточные нейрофибриллярные сплетения (парные спиральные нити). Отложение бета-амилоидов и нейрофибриллярные сплетения приводят к утрате синапсов и нейронов, что, в свою очередь, ведёт к грубой атрофии пораженных участков головного мозга, в типичных случаях начинающейся с медиальной височной доли. Основным компонентом амилоидных бляшек является амилоидный β-протеин (АbП). АbП — пептид, состоящий из 39–42 аминокислот, который отщепляется в результате протеолиза от С-