ноза и пациентов с атопическим дерматитом без респираторной аллергии выявлено значимое преобладание уровней эозинофилов, IgG и IgE в периферической крови, чем в группе сравнения.

- 2. Выявлено увеличение уровней активированных CD3⁺CD4⁺CD25⁺ (Т-хелперы активированные) и CD3⁺CD4⁺CD25^{+high}CD127^{+low} (Т-регуляторные) лимфоцитов, IgE, эозинофилов периферической крови в группе пациентов с атопическим дерматитом с сопутствующей респираторной аллергической патологией.
- 3. Повышение уровней субпопуляций CD25-экспрессирующих лимфоцитов у пациентов с АД характерно для пациентов с развитием «аллергического марша» в виде сопутствующей атопическому дерматиту респираторной аллергопатологии.
- 4. Контроль динамики уровня CD3⁺CD4⁺CD25⁺ (Т-хелперы активированные) и CD3⁺CD4⁺CD25^{+high}CD127^{+low} (Т-регуляторные) лимфоцитов, IgE, эозинофилов периферической крови позволит оценить эффективность проводимых лечебных и элиминационных мероприятий у пациентов с атопическим дерматитом.

ЛИТЕРАТУРА

- 1. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis / B. Nedoszytko [et al.] // Adv Dermatol Allergol. 2017. Vol. 24, N_2 5. P. 405–417.
- 2. The Imbalance of Th17 cells and CD4(+) CD25(high) Foxp3(+) Treg cells in patients with atopic dermatitis / L. Ma [et al.] // J Eur Acad Dermatol Venereol. 2014. № 28. P. 1079–1086.
- 3. Absence of T-regulatory cell expression and function in atopic dermatitis skin / J. Verhagen [et al.] // J Allergy Clin Immunol. 2006. № 117. P. 176–183.
- 4. Expansion of FOXP3-pos- itive CD4+CD25+ T cells associated with disease activity in atopic dermatitis / Y. Ito [et al.] // Ann Allergy Asthma Immunol. 2009. Vol. 103. P. 160–165.
- 5. Immune regulation by CD4+CD25+ T cells and interleukin-10 in birch pollen- allergic patients and non-allergic controls / S. Thunberg [et al.] // Clin Exp Allergy. 2007. № 37. P. 1127–1136.

УДК 577.212:576.311.347]-092.9 АНАЛИЗ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ МИТОХОНДРИАЛЬНОЙ ДНК В РАЗЛИЧНЫХ ТКАНЯХ КРЫС ЛИНИИ WISTAR

Зятьков А. А., Шафорост А. С.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Согласно данным ВОЗ, а также Национального статистического комитета Республики Беларусь во всем мире наблюдается ускорение старения населения, что выражается в увеличении доли населения в возрасте свыше 65 лет. Данное явление способствует проведению работ по раннему выявлению и предотвращению развития заболеваний, при этом сам процесс старения рассматривается отдельно от заболеваний, однако считается фактором риска их развития. Ряд исследователей рассматривают старение как заболевание, для которого характерны причины, механизми и следствие, но поскольку причины сенесценции полиэтиологичны, а механизмы затрагивают большинство живых существ и все уровни организации организма, то старение является одним из процессов в онтогенезе организма. Основная задача борьбы со старением заключается в способности приостанавливать и возвращать биологический возраст на более молодой уровень. Основная же функция маркеров старения — достоверно показывать степень сенесценции организма и эффективно разделять биологический возраст от хронологического.

Множественные клеточные изменения, такие как окислительное повреждение, дисфункция митохондрий, укорочение теломер, воспаление, могут ускорить сенесцен-

цию и вызывать возрастные заболевания организма. Клеточные механизмы старения и возраст-ассоциированные заболевания до конца не изучены. Однако недавние открытия в молекулярной биологии позволили выдвинуть ряд гипотез [1] о процессе старения организма и выявить молекулярные маркеры сенесценции, которые являются потенциальными индикаторами старения и развития возрастных заболеваний [2].

Пель

Подбор оптимального биоматериала для исследования сенесценции с использованием количественного определения содержания митохондриальной ДНК (мтДНК).

Материал и методы исследования

Объектом исследования являлись самцы крыс линии Wistar стадного разведения в возрасте 3 и 9 месяцев в количестве 10 особей в группе.

Для эксперимента использовали кровь и биоптаты легких, печени и селезенки. Взятие биологического материала проводили в соответствии с правилами для проведения молекулярно-биологических исследований.

Выделение ДНК. С использованием коммерческого набора GeneJet Genomic DNA (Thermo Scientific, США) получали ДНК крыс. Количество полученной ДНК в препарате оценивали с помощью спектрофотометра Nanodrop (ND 1000). Для дальнейшего анализа выбирали образцы, для которых соотношение экстинкций составляло: $A260/A280 \ge 1,67,\ A260/A230 \ge 1,90,\ A320 \rightarrow 0$. Данные спектрофотометрического анализа представлены на рисунке 1.

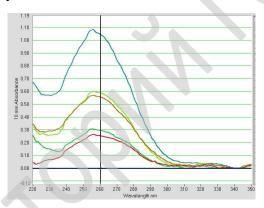


Рисунок 1 — Спектрограмма препаратов суммарной ДНК исследованных образцов

Полученную ДНК, для последующего анализа, хранили при температуре –20 °C.

Для количественного анализа мтДНК использовали ПЦР-РВ (полимеразная цепная реакция в реальном времени). С этой целью в образцах проводили выявление фрагмента гена мтДНК (D-loop) и локуса гена ядерной ДНК (яДНК) β -actin (human gene and protein symbol ACTB/ACTB).

Для получения стандартизированных результатов ПЦР-РВ использовали готовые коммерческие наборы. Смесь реагентов для проведения одной реакции в объеме 25 мкл готовили следующим образом: $2 \times$ ПЦР-буфер SYBR Green (Thermo Scientific, США) — 12,5 мкл, прямой праймер F (50 мкМ) — 0,2 мкл, обратный праймер R (50 мкМ) — 0,2 мкл, образец ДНК — 5 мкл. Конечный объем доводили водой до 25 мкл.

Структура праймеров, используемых для анализа, представлена в таблице 1.

Таблица 1 — Структура праймеров, используемых для определения количества яДНК и мтДНК

Название праймера	Нуклеотидная последовательность	Размер фрагмента, п.н.	
mtDNA (smillill)	GGTTCTTACTTCAGGGCCATCA	0.4	
mtDNA (мтДНК)	TGATTAGACCCGTTACCATCGA	84	
Reaction (gHIH/)	CCCAGCCATGTACGTAGCCA	96	
β-actin (яДНК)	CGTCTCCGGAGTCCATCAC	86	

Для проведения ПЦР более 1 образца готовили общий раствор (Master mix), в который входят все компоненты смеси (кроме образца ДНК) в количестве, соответствующем числу образцов. Образец вносили индивидуально в каждую пробирку, содержащую аликвотированный (на 1 анализ) Master mix.

Программа амплификации исследуемых участков генов мтДНК и яДНК представлена в таблице 2.

Таблица 2 — Программа амплификации участков генов мтДНК и яДНК

No	Температура, °С	Продолжительность	Количество циклов
1	95	10 мин	1
2	95	5 c	25
2	60	30 c	33

Для детекции продуктов амплификации использовали анализ кривых плавления (melting curves), основанный на нагревании смеси после окончания ПЦР и непрерывном измерении флуоресценции, которая меняется с достижением температуры плавления продукта амплификации (рисунок 2).

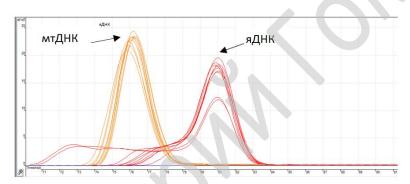


Рисунок 2 — Кривые плавления ампликонов (мтДНК и яДНК)

Результаты исследования и их обсуждение

Для определения количества копий исследуемых локусов мтДНК и яДНК определяли значение Ct для каждого образца, далее находили разницу (ΔCt) между пороговыми значениями исследуемых локусов для каждого образца, затем рассчитывали показатель относительного количества мтДНК возведением эффективности реакции в степень ΔCt . Статистическую обработку данных проводили с использованием «Microsoft Excel 2010». Результаты статистической обработки полученных данных приводятся в таблице 3.

Таблица 3 — Результаты описательной статистики исследуемых возрастных групп

Биоматериал	Средняя величина относительного количества мтДНК		Коэффициент вариации показателя, %	
	группа 3 месяца	группа 9 месяцев	группа 3 месяца	группа 9 месяцев
Кровь	309,79	245,45	56,11	44,65
Легкие	87,80	72,52	52,95	25,10
Печень	1778,33	1683,77	85,10	53,98
Селезенка	98,16	98,95	48,61	76,21

Как видно из таблицы 3, разброс средних значений относительного количества мтДНК меньше выражен для клеток крови и легких, что свидетельствует о более высокой воспроизводимости результатов для данных тканей, но использование легких в качестве органа для определения маркеров сенесценции клеток лабораторных животных,

с сохранением их жизнеспособности затруднительно. В данном случае использование крови является оптимальным биологическим материалом для определения количества мтДНК. Значительная вариация показателя относительного количества мтДНК для образцов печени и селезенки связана с особенностями препаратов ДНК, и в частности пролиферативной активности ткани.

Полученные данные согласуются с результатами исследований, представленными в литературных данных, и базируются на особенностях молекулярно-биологических механизмов клеточного деления эукариотических организмов.

Выводы

Выявлены отличия в вариации показателя количества мтДНК в разных органах крыс линии Wistar; воспроизводимость экспериментальных данных, позволяет считать кровь оптимальным биологическим материалом для исследований процессов сенесценции основанных на определении количества мтДНК.

ЛИТЕРАТУРА

- 1. Зятьков, А. А. Молекулярно-генетические маркеры сенесценции: современное состояние проблемы и перспективы развития / А. А. Зятьков, О. Ю. Баранов // Проблемы здоровья и экологии. 2019. № 2 (60). С. 19–23.
- 2. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart / G. Chimienti [и др.] // Free Radical Biology and Medicine. 2018. T. 124. C. 447–453.

УДК 616.34-008.314.4-07-08:615.281:579.86 ОПЫТ ДИАГНОСТИКИ *C. DIFFICILE*-АССОЦИИРОВАННЫХ ЗАБОЛЕВАНИЙ

Логинова О. П.

Государственное учреждение «Республиканский научно-практический центр радиационной медицины и экологии человека» г. Гомель, Республика Беларусь

Введение

Широкое и неконтролируемое применение антибиотиков привело к тому, что диареи, ассоциированные с их приемом, представляют одну из актуальных проблем современной медицины. Частота развития антибиотико-ассоциированных диарей в зависимости от класса используемых препаратов и действия предрасполагающих факторов может варьировать от 3 до 29 %. До 40 % всех случаев антибиотико-ассоциированных диарей связано с Clostridiumdifficile. С. difficile — облигатно-анаэробная, грамположительная, спорообразующая, цитотоксинпродуцирующая палочка. Этот патоген служит причиной возникновения С. difficile-ассоциированной диареи. С начала XXI в. многих странахмира отмечается стремительное нарастание ее распространенности [1].

С. difficile-ассоциированная диарея развивается чаще у пациентов, получающих антибактериальную терапию, у госпитализированных больных, лиц пожилого возраста, пациентов с тяжелыми сочетанными заболеваниями, а также находящихся на лечении иммуносупрессивными препаратами. Рассматриваемая патология служит наиболее частой причиной внутрибольничной диареи, приводящей к значительному числу смертельных исходов. Прием антибиотиков или другие негативные факторы приводят к нарушению состава микробиома толстой кишки, что снижает колонизационную резистентность и обеспечивает формирование «ниши» для колонизации С. difficile. Основными факторами вирулентности С. difficile являются токсины А и В, вызывающие повреждение кишечной стенки и воспаление в ней вследствие нарушения кишечного эпителиального барьера, индукции провоспалительных цитокинов, апоптоза и некроза эпителиоцитов [2].