УДК 612.664.191:615.015.8(476.2-25)"2016/2018

АНТИБИОТИКОРЕЗИСТЕНТНОСТЬ И БАКТЕРИАЛЬНЫЙ СПЕКТР В ОБРАЗЦАХ ГРУДНОГО МОЛОКА ПО ГОРОДУ ГОМЕЛЮ ЗА 2016–2018 ГГ.

Ким К. М., Козлова К. А.

Научные руководители: ассистент О. В. Зинкевич, ассистент Н. А. Бонда

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Грудное молоко содержит иммуноглобулины, лизоцим, лактоферрин, олигосахариды, липиды, интерфероны, фибронектин, живые культуры Lactobacillus и Bifidobacterium, клеточные компоненты — макрофаги, лимфоциты, нейтрофильные гранулоциты, эпителиальные клетки, способствующие заселению ЖКТ ребенка полезными микроорганизмами [1]. Гликаны ингибируют связывание таких патогенов как Escherichia coli, Campylobacter jejuni, ротовирусов и токсинов с их рецепторами на поверхности клеток. Молоко матерей с ожирением содержит более высокое суммарное число Staphylococcus и Lactobacillus и меньшее количество Bifidobacterium по сравнению с молоком женщин с нормальным весом [2]. Таким образом, изменение бактериального спектра молока влияет на развитие ребенка. Главным фактором коррекции является антибиотикотерапия. Всемирная организация здравоохранения (ВОЗ) 7 апреля 2011 г. объявила антибиотикорезистентность глобальной проблемой, требующей незамедлительного принятия мер по ее решению [3].

Цель

Проанализировать данные о видах микроорганизмов, высеянных в образцах грудного молока в период с 2016 по 2018 гг. и спектр их антибиотикорезистентности.

Материал и методы исследования

В основу положен анализ данных Гомельского областного центра гигиены, эпидемиологии и общественного здоровья. Данные включали в себя посевы на микрофлору и чувствительность к антибиотикам, выделенные из грудного молока. Идентификация микроорганизмов, исследование чувствительности к антибиотикам проводилась на автоматическом бактериологическом анализаторе Vitek 2 Compact (BioMérieux, Франция) и бактериологическими методами. Для оценки результатов использовался непараметрический статистический критерий Вилкоксона.

Результаты исследования и их обсуждение

Результаты микробиологического исследования представлены в таблицах 1, 2. Возраст женщин составлял от 19 до 58 лет. В сравнении показателей за 2016 год и показателей за 2017–2018 гг. критерий Вилкоксона составлял 4 и 3 соответственно.

Таблица 1 — Микроорганизмы, высеянные из образцов грудного молока

Возбудитель	2016 г.	2017 г.	2018 г.
Staphylococcus aureus	41 (41 %)	25 (36,8 %)	14 (29,2 %)
Staphylococcus epidermidis	31 (31 %)	17 (25 %)	22 (45,8 %)
Staphylococcus saprophyticus	4 (4 %)	1 (1,5 %)	1 (2,1 %)
Escherichia cloacae	6 (6 %)	2 (2,9 %)	2 (4,2 %)
Klebsiella pneumonia	4 (4 %)	2 (2,9 %)	1 (2,1 %)
Citrobacter freundii	2 (2 %)		
Escherichia coli	1 (1 %)	3 (4,4 %)	2 (4,2 %)
Klebsiella oxytoca	2 (2 %)		
Enterobacter aerogenes	2 (2 %)		1 (2,1 %)
Pseudomonas aeruginosa	1 (1 %)		

Окончание таблицы 1

Возбудитель	2016 г.	2017 г.	2018 г.
Pseudomonas pidido + Staphylococcus aureus	1 (1 %)		_
Klebsiella pneumonia + Citrobacter freundii	1 (1 %)		
Escherichia cloacae + Staphylococcus aureus	1 (1 %)	1 (1,5 %)	
Escherichia coli + Staphylococcus aureus	2 (2 %)	1 (1,5 %)	
Escherichia cloacae + Staphylococcus epidermidis	1 (1 %)		
Staphylococcus aureus + Stenotrophomonas maltophilia	_	1 (1,5 %)	_
Escherichia coli + Staphylococcus epidermidis		4 (5,9 %)	
Staphylococcus aureus + Achromobacter xylosoxidans		1 (1,5 %)	
Staphylococcus epidermidis + Enterococcus faecalis	_	2 (2,9 %)	
Staphylococcus aureus + Klebsiella pneumonia		2 (2,9 %)	
Staphylococcus aureus + Staphylococcus epidermidis		2 (2,9 %)	2 (4,2 %)
Staphylococcus epidermidis + Escherichia cloacae+	_	3 (4,4 %)	
Staphylococcus saprophyticus+ Staphylococcus aureus	_	1 (1,5 %)	
Enterobacter cloacae + Klebsiella pneumoniae + Staphylococcus aureus			1 (2,1 %)
Enterobacter aerogenes+ Staphylococcus aureus	_		2 (4,2 %)
Всего образцов	100	68	48

Таблица 2 — Устойчивость стафилококков к антибиотикам

Антибиотик	2016 г.	2017 г.	2018 г.
Пенициллин	43 (53,1 %)	53 (82,8 %)	27 (61,4 %)
Амоклав	0 (0 %)	0 (0 %)	0 (0 %)
Левофлоксацин	0 (0 %)	0 (0 %)	4 (9,1 %)
Цефокситим	0 (0 %)	3 (4,7 %)	0 (0 %)
Клиндамицин	2 (2,5 %)	0 (0 %)	6 (13,6 %)
Эритромицин	7 (8,6 %)	19 (29,7 %)	7 (15,9 %)
Ванкомицин	0 (0 %)	1 (1.6 %)	1 (2,3 %)
Гентамицин	0 (0 %)	5 (7,8 %)	3 (6,8 %)
Устойчивость отсутствует	10 (12,3 %)	8 (12,5 %)	8 (18,2 %)

Выводы

Наблюдается рост числа микстинфекций с 6 до 26,5 % и 10,5 % по данным за 2016, 2017 и 2018 гг. соответственно. Наиболее часто высеваются S. aureus и S. epidermidis. С 2016 на 2017 гг. наблюдается рост устойчивости к некоторым пенициллину, эритромицину, цефокситину, ванкомицину и гентамицину. В 2018 г. мы видим повышение чувствительности к левофлоксацину, цефокситиму и клиндамицину, снижение чувствительности к пенициллину и эритромицину.

ЛИТЕРАТУРА

- 1. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis / Rakoff-Nahoum [et al.] // Cell. 2004. Vol. 118. P. 229–241.

 2. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of de-
- livery / R. Cabrera-Rubio [et al.] // Am J Clin Nutr. 2012. Vol. 96. P. 544–551.

 3. The WHO policy package to combat antimicrobial resistance // Bulletin of the World Health Organiza-
- tion. 2011. 1.5° 89. P. 390–392.

УДК 616.921.5-057.874:615.371

ПРОБЛЕМА ВАКЦИНОПРОФИЛАКТИКИ ГРИППА В АНКЕТИРОВАНИЕ ШКОЛЬНИКОВ

Кириленко Л. Ю., Бем Р. В.

Научный руководитель: к.б.н., доцент Т. Е. Дороженкова

Учреждение образования «Белорусский государственный медицинский университет» г. Минск, Республика Беларусь

Введение

Опасность гриппа недооценивают. Между тем он является одним из самых серьезных и массовых заболеваний среди прочих вирусных инфекций. Оно вызывает эпиде-