
Секция 5

УДК 796.015.12:796.853.26

ИЗМЕНЕНИЕ ПАРАМЕТРОВ «СРОЧНОЙ» АДАПТАЦИИ ОРГАНИЗМА КВАЛИФИЦИРОВАННЫХ КАРАТИСТОВ ПРИ НАПРЯЖЕННОЙ ТРЕНИРОВОЧНОЙ ДЕЯТЕЛЬНОСТИ

K. K. Бондаренко 1 , A. E. Бондаренко 2

¹Учреждение образования «Гомельский государственный медицинский университет», ²Учреждение образования

«Гомельский государственный университет имени Франциска Скорины» г. Гомель, Республика Беларусь

Введение

Эффективность управления процессом подготовки квалифицированных спортсменов определяется наличием объективной информации о величине тренирующих воздействий и реакции организма на выполняемые нагрузки.

В основе результата спортивной составляющей заложены процессы адаптации в организме спортсмена под воздействием напряженной тренировочной деятельности. Адаптация организма к физическим нагрузкам характеризуется двумя видами: «срочной» и «долговременной». Переход от этапа «срочной» к этапу «долговременной» адаптации основан на формировании морфофункциональных и регулярных механизмов. При этом, решаются две основные задачи — обеспечение мышечной деятельности и поддержание гомеостаза внутренней среды [4]. Тренированность организма спортсмена определяется повышением функциональной мощности систем организма и экономичностью их функционирования. Это сопровождается повышением адренореактивности тканей и снижением «расходов» катехоламинов при обеспечении мышечной деятельности. Данная тенденция обусловливает меньшую активацию адренергической системы в тренированном организме [3].

Определение функционального состояния различных систем организма, его функциональной готовности и тренированности, сопровождается их адекватной реакцией и оптимизацией восстановительных процессов. Ранее были получены объективные данные формирования срочных адаптационных процессов в условиях напряженной физической деятельности [1, 2]. Вместе с тем, следует учитывать, что квалифицированные спортсмены обладают индивидуальными особенностями адаптационных возможностей. «Срочная» адаптация является начальной стадией процессов приспособления к физической нагрузке, характеризующейся мобилизацией функциональных систем, ответственных за адаптацию до предельно достижимого уровня [4]. Положительный эффект адаптационных процессов к физическим нагрузкам определяется ее структурным «следом». Структурный «след» адаптации характеризуется двумя составляющими. Первая составляющая характеризуется ростом емкости легких и мощностью дыхательной мускулатуры. Кроме того, увеличивается мощность гликолиза и повышение содержания гемоглобина в крови. Похожие изменения формируются и в скелетной мускулатуре [5]. Вторая составляющая характеризуется изменениями на уровне регуляторных систем: перестройкой симпатико-адреналовой системы, увеличением запасов катехоламинов в надпочечниках и ростом активности в них ферментов синтеза, связанных с активацией белков [4]. Данный механизм «срочной» адаптации лежит в основе формирования «устойчивой долговременной» адаптации к физическим нагрузкам. Рациональное дозирование и адекватность подбора тренировочных и соревновательных нагрузок ведет к положительному эффекту адаптационных процессов в организме спортсмена [1].

Материал и методы исследования

Структура работы определялась программой комплексного функционально-диагно-стического исследования, включавшая:

- эффективность обеспечения мышечной работы;
- послерабочих сдвигов в системах организма;
- оценку лабильных компонентов массы тела.

Методы исследования программы оперативной диагностики включали:

- врачебный осмотр;
- регистрацию ЧСС и АД;
- расчет вегетативного индекса Кердо;
- определение массы тела, мышечного и жирового компонентов;
- проведение ортопробы с регистрацией ЧСС, АД, ЭКГ;
- определение функционального состояния скелетных мышц методом миометрии.

В течение тренировочной деятельности квалифицированных каратистов исследовался срочный эффект влияния специальных нагрузок на организм спортсменов в микроциклах.

Исследования проводились на многофункциональном научно-исследовательском стенде лаборатории физической культуры и спорта УО «Гомельский государственный университет имени Франциска Скорины», в рамках государственной программы научных исследований «Конвергенция — 2020» — «Разработка программно-аппаратных диагностических комплексов и реабилитационных тренажеров, адаптируемых к специализации и квалификации трудовой и спортивной деятельности».

Исследования проводились в течение двух периодов подготовки квалифицированных спортсменов, занимающихся карате — обще подготовительном и специально подготовительном. В исследовании приняло участие 27 спортсменов в возрасте 17–20 лет. Все спортсмены прошли углубленное медицинское обследование в медицинских учреждениях и диспансере спортивной медицины и получили допуск по состоянию здоровья к тренировкам и соревнованиям в полном объеме.

Результаты исследования и их обсуждение

На различных этапах годичного цикла подготовки была выявлена положительная динамика функционального состояния организма. В частности, отмечалась хорошая переносимость тренировочных нагрузок и достаточно высокая скорость протекания восстановительных процессов в организме. Тренировочные нагрузки обще подготовительного этапа характеризовались повышением уровня физической подготовленности и развития основных физических качеств. Структура специально подготовительного этапа была направлена на совершенствование технико-тактической, скоростно-силовой и технической подготовленности.

Диагностика показателей «срочной» адаптации определялась по 83 протоколам тестирования. Кроме того, осуществлялся контроль субъективных показателей переносимости тренировочных нагрузок. Данные оценки восприятия напряженной физической деятельности свидетельствовали о положительной реакции восприятия нагрузок спортсменами (87,2 %). Вместе с тем, 12,8 % занимающихся отмечали негативные составляющие нагрузочной деятельности, в частности:

- болезненные ощущения в скелетных мышцах 6,7 %;
- повышенную утомляемость 5,8 %;
- нарушение cна 0,3 %.

Обще подготовительный этап подготовки характеризовался наличием нарушением процессов «срочной» адаптации к тренировочным нагрузкам в виде неадекватности изменения артериального давления. Из 83 протоколов отмечались следующие изменения:

- повышенное АД (130–140–150/80–90 мм рт. ст.) в 1,2 %;
- сниженное АД (90–95/70–75 мм рт. ст.) 1,4 %.

Биомеханический анализ «срочной» адаптации мышечной деятельности к тренировочным нагрузкам позволил выявить изменение реакции скелетных мышц на напряженную нагрузочную деятельность. По данным 83 протоколов миометрии выявотклонения от диапазона нормального функционирования:

- повышенный мышечный тонус 2,4 %;
- пониженный мышечный тонус 0,3 %;
- снижение эластичности скелетной мышцы 3,1 %;
- снижение силового потенциала скелетной мышцы 4,8 %.

Кроме того, выявлен диапазон снижения эффективности мышечной деятельности после выполнения нагрузок различной направленности. В частности, после нагрузок на проявление быстроты и скоростно-силовых качеств время восстановления скелетной мышцы находилось в диапазоне 12–36 часов. После нагрузок силовой направленности диапазон восстановления составлял 24–60 часов.

В конце специально подготовительного этапа подготовки отмечалось снижение негативных показателей субъективных ощущений. Одновременно с этим, отмечалось повышение значимости объективных показателей «срочной» адаптации. Данные уровня физической работоспособности, оцениваемые по параметрам лабильных компонентов массы тела показали планомерное улучшение функциональных возможностей организма на протяжении этапов подготовки.

Заключение

Рациональное дозирование и адекватный подбор тренировочных упражнений ведет к положительному эффекту адаптационных процессов. Чрезмерность физической нагрузки и игнорирование периодов восстановления, зачастую приводит к срыву адаптации и нарушению гомеостаза организма. Устойчивость адаптация к физическим нагрузкам имеет «цену» приспособления, проявляющаяся в форме «изнашивании» функциональной системы, принимающей на себя основную нагрузку. Это приводит к значительному замедлению процессов восстановления и, как правило, к снижению уровня работоспособности. Кроме того, это может проявиться в виде отрицательной перекрестной адаптации. Данное состояние ведет к нарушениям других функциональных систем и их адаптационных реакций.

Выводы

- 1. Повышение уровня функциональной подготовленности организма при применении ударных тренировочных микроциклов без учета «следовых» процессов предыдущих нагрузок может приводить к нарушению «срочной» адаптации сердечно-сосудистой и вегетативной нервной систем, снижению эффективности деятельности скелетных мышц.
- 2. В рамках подготовительных этапов годичного цикла выявлена частота нарушений симптомов «срочной» адаптации. Определен характер снижения адаптационных процессов в организме квалифицированных спортсменов и пути появления неудовлетворительного функционального состояния различных его систем.
- 3. Выявленные изменения процессов формирования «срочной» адаптации к тренировочным нагрузкам позволили определить средства коррекции тренировочной деятельности и программу восстановительных мероприятий.

ЛИТЕРАТУРЫ

- 1. *Бондаренко, К.* Раціональність тренувальних впливів при підготовці в карате / К. Бондаренко, И. Фигуренко // Теоретико-методичні основи організації фізичного виховання молоді: Матеріали І Регіонального науково-практичного семінару / За заг. ред. Р. Р. Сіренко. Львів: Видавничий центр ЛНУ імені Івана Франка, 2006. С. 17–19.
- 2. *Бондаренко, К. К.* Изменение функционального состояния скелетных мышц под воздействием напряженной нагрузочной деятельности / К. К. Бондаренко, Е. А. Кобец, А. Е. Бондаренко // Наука і освіта. 2010. № 6/LXXXIII. С. 35–40.
- 3. *Давиденко*, Л. Н. Мобилизация физиологических резервов при напряженной мышечной деятельности / Л. Н. Давиденко, А. С. Мозжухин, В. В. Телегин // Физиология человека. 1986. Т. 13, № 1. С. 127–133.
- 4. *Меерсон, Ф.* 3. Адаптация и стрессовая ситуация к физическим нагрузкам / Ф. 3. Меерсон, М. Г. Пшенникова. М.: Медицина, 1988. 250 с.
- 5. *Shil'ko*, *S. V.* Generalized model of a skeletal muscle / S. V. Shil'ko, D. A. Chernous, K. K. Bondarenko // Mechanics of composite materials. 2016. Vol. 51, № 6. P. 789–800.