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Введение. В статье дано описание основных параметров митохондриального дыхания и окислитель­
ного фосфорилирования ткани тонкого кишечника лабораторных животных (крысы линии Wistar) после 
воздействия разового внешнего облучения. Показана высокая дыхательная активность ткани тонкого 
кишечника, на эндогенных и экзогенных субстратах. 

Цель исследования. Оценить функциональное состояние электрон -транспортной цепи митохон­
дрий фрагментов кишечника лабораторных крыс после разового внешнего облучения в дозе 0,5 и 1 Гр.

Материалы и методы. Две группы белых крыс-самцов линии Wistar массой 180–220 г, однократно 
облучили на установке «ИГУР-1», источник 137Сs в дозе 0,5и 1 Гр (мощность дозы 0,92 Гр/мин). На 3-и 
и 10-е сутки после облучения часть тонкого кишечника изолировали, отмывали и выворачивали «наи­
знанку». Методом полярографии исследовали параметры митохондриального окисления тканевых фраг­
ментов кишечника. 

Результаты. На 3-и сутки после облучения выявлено статистически значимое (р = 0,001) снижение 
показателя эндогенного дыхания, уменьшение интенсивности потребления кислорода при внесении 
экзогенных субстратов (р = 0,05). На 10-е сутки наблюдалась стимуляция дыхательной активности, 
дополнительное введение экзогенных субстратов дыхания не усиливало интенсивность потребления 
кислорода тканью. Не установлено разобщающего действия 2,4-динитрофенола на дыхательную цепь 
в кишечной ткани. Ингибиторный анализ показал, что облучение в дозе 0,5и 1 Гр влияет на поступление 
субстратов в дыхательную цепь.

Заключение. Однократное γ-облучение приводит к значительным изменениям в состоянии энерге­
тического обмена ткани тонкого кишечника у лабораторных крыс. 
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Введение
Эпителий тонкого кишечника одна из наиболее 

радиочувствительных тканей организма, состоящая 
из большого числа активно размножающихся мало­
дифференцированных клеток [1]. Важнейшей вну­
триклеточной мишенью для прямого и косвенного 
воздействия ионизирующего облучения являются 
митохондрии, которые не только обеспечивают 
клетки энергией, поддерживают ионный гомеостаз, 
регулируют апоптоз, но и выступают генераторами 
активных форм кислорода. Процесс окислительно­
го фосфорилирования (ОФ), локализованный в ми­
тохондриях, необходимый для поддержания энерге­
тического статуса клеток кишечника является ос­

новным источником образования активных форм 
кислорода (АФК) [2,3]. Под действием ионизирую­
щего излучения увеличивается образование эндо­
генных АФК митохондриями, что потенциально 
приводит к изменению метаболических процессов 
в клетках кишечника, включая изменение основных 
параметров энергетического обмена и снижение аэ­
робного дыхания ткани [4].

В ряде работ Kim E.M. (2008), Yoshida T. (2012), 
Wang Y. J. (2013) показано, что после воздействия 
на клетки γ-излучения в дозах 1-8 Гр наблюдается 
снижение митохондриального трансмембранного 
потенциала, общего количества адениновых ну­
клеотидов, повреждение митохондриальных бел­
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ков, в том числе входящих в структуру комплексов 
дыхательной цепи (ДЦ) [5–7].

Разовое действие облучения низкой мощности 
поглощённой дозы вызывает существенные изме­
нения функциональной активности митохондрий 
кишечной слизистой крыс, как отмечено в работе 
С. В. Хижняк и др. В модели на изолированных 
митохондриях ткани тонкого кишечника описано, 
что угнетение митохондриальной функции, разоб­
щение дыхания и фосфорилирования, снижение 
активности фермента АТФ-синтазы зависит от 
дозы облучения и сохраняется в течение 24 часов. 
Исследование функционального состояния вну­
тренней мембраны митохондрий энтероцитов тон­
кого кишечника после воздействия ионизирующей 
радиации низкой мощности (0,055 Гр/мин) в по­
глощенных дозах 0,1; 0,5 и 1,0 Гр демонстрирует 
нарушения работы ферментов ДЦ, Н+- АТФазы, 
изменение количества цитохромов и убихинона [8, 
9]. Однако известно, что ткань кишечника отно­
сится к быстро обновляющимся тканям, восста­
новление слизистой исключительно энергозатрат­
ный процесс, поэтому важно оценить состояние 
электрон-транспортной цепи в более поздние сро­
ки после облучения. Данный вопрос остается не­
достаточно неизученным, но актуальным, по­
скольку сдвиги в энергетическом гомеостазе взаи­
мосвязаны со способностью ткани кишечника к 
восстановлению после радиационного воздей­
ствия и риском развития метаболических наруше­
ний в клетках кишечной слизистой, приводящих к 
снижению защитных механизмов кишечного ба­
рьера. Митохондриальная дисфункция и связан­
ные с ней изменения функций кишечного эпителия 
являются новыми концепциями патогенеза воспа­
лительных заболеваний кишечника, предполагаю­
щими, что нарушенная метаболическая гибкость 
эпителиальных клеток влияет на регенеративную 
способность кишечной ткани. Помимо того, что 
слизистая оболочка кишечника становится вос­
приимчивой к воспалительным триггерам, метабо­
лическое перепрограммирование эпителия уча­
ствует в формировании неблагоприятной микроб­
ной среды [10, 11].

Митохондриальные изменения, такие как сни­
жение общего количества АТФ, скорости дыхания 
на эндогенных и экзогенных субстратах (Vэнд, 
Vяк, Vглу) уменьшение активности 1 или 2 ком­
плесков дыхательной цепи, наличие разобщения 
процессов окисления и фосфорилирования (Vднф) 
используются в качестве индикатора митохондри­
ального повреждения, в том числе после воздей­
ствия облучения [12–14]. Кроме того, важной за­
дачей экспериментального исследования является 
экстраполяция результатов, полученных в модель­

ных опытах к условиям целого организма, поэтому 
использование тканевых фрагментов, которые 
структурно и метаболически минимально повреж­
дены, нам кажется предпочтительным.

Цель исследования. Оценить функциональное 
состояние митохондрий тканевых фрагментов ки­
шечника лабораторных крыс после разового внеш­
него облучения в дозе 0,5 и 1 Гр по основным по­
казателям эффективности работы электрон-транс­
портной цепи: эндогенному дыханию, ответной 
реакции на внесение экзогенных субстратов (ян­
тарной и глутаминовой кислот), наличию разоб­
щения при воздействии 2, 4-динитрофенола, соот­
ношению активности 1 и 2 комплексов ДЦ после 
введения ингибиторов (амитала и малоната).

Материалы и методы
В работе использовались 38 лабораторных 

крыс-самцов линии Wistar массой 150 – 220 грамм. 
Контрольные и экспериментальные животные со­
держались в стандартных клетках по 6–7 голов на 
обычном рационе вивария, имея свободный до­
ступ к пище и воде [15]. При проведении экспери­
ментов соблюдены требования, регламентирован­
ные международными рекомендациями и правила­
ми Директивы 2010/63/EU Европейского 
Парламента и Совета Европейского Союза по 
охране животных, используемых в научных целях 
от 22.09.2010. 

Сформированы контрольная (n = 14) и две 
опытные группы животных (по n = 12), которых 
однократно облучили в дозах 0,5 и 1,0 Гр. Общее 
облучение лабораторных животных проводили на 
установке «ИГУР-1», источник 137Сs, мощность 
дозы составляла 0,92 Гр/мин. Животных каждой 
группы в количестве 6–7 особей выводили из экс­
перимента путем мгновенной декапитации на тре­
тьи и десятые сутки после облучения.

Для получения тканевых фрагментов использо­
вался метод «вывернутый кишечный мешок» 
(inverted intestine sacs). После декапитации первые 
10 см тонкого кишечника (участок двенадцатипер­
стной кишки) изолировали скальпелем, промыва­
ли в охлажденном (2 °С) физиологическом раство­
ре, при помощи препаровальной иглы выворачи­
вали «наизнанку», освобождали от соединительных 
элементов и пищевых частиц. Полученные препа­
раты помещали в раствор Хэнкса. Из выделенного 
участка кишечника получали кольцевые фрагмен­
ты (2–3 мм). Все операции проводились при тем­
пературе 0–2 °С, в течение не более 5 мин. Пара­
метры энергетического обмена исследовали мето­
дом полярографии на Record 4 (Пущино, Россия) 
платиновым электродом Кларка в ячейке объемом 
2 мл при 25 ºС. В этих условиях исходное количе­
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ство кислорода, растворенного в заданном объеме 
ячейки, равнялось 250 нМ/мл. Скорость поглоще­
ния кислорода тканью выражали в нмоль атом кис­
лорода за 1 минуту на мг белка (нмоль O2×мин/мг 
белка) [16]. Определение белка в предварительно 
гомогенизированных образцах тонкого кишечника 
проводили биуретовым методом.

Для изучения функционального состояния ды­
хательной цепи фрагментов тонкого кишечника 
крыс их помещали в полярографическую ячейку 
(3–4 кольца). Состояние энергетического обмена 
кусочков ткани кишечника характеризовали по та­
ким параметрам как скорость потребления кисло­
рода на эндогенных субстратах (Vэнд), используя 
экзогенные субстраты дыхания сукцинат (Vяк) и 
глутамат (Vглу), а также применяя разобщитель 
ОФ 2,4-динитрофенол (Vднф).

Поскольку в митохондриальном матриксе 
имелся запас эндогенных субстратов, первона­
чально происходило их окисление (Vэнд). По про­
шествии времени, достаточного для расчета вели­
чины Vэнд вводился экзогенный субстрат окисле­
ния (глутамат, сукцинат), рН которых был 
предварительно доведен до 7,4. Количество вводи­
мого субстрата соответствовало его конечной кон­
центрации в ячейке 5÷10 мМ. Для оценки сопря­
жения тканевого дыхания и окислительного фос­
форилирования учитывали степень возрастания 
потребления кислорода тканью после добавки 
разобщителя (Vднф). Также рассчитывали относи­
тельные показатели: коэффициенты стимулирую­
щего действия (СД) для каждого субстрата: 
СДяк = Vяк/Vэнд; СДглу = Vглу/Vэнд и разобщи­
теля: СДднф = Vднф/Vэнд.

Выбранные параметры характеризуют ско­
рость дыхания на эндогенных и экзогенных суб­
стратах, количественное и качественное их соот­
ношение, активность соответствующих дегидро­
геназ (ДГ) (сукцинатДГ и глутаматДГ), состояние 
транспортных процессов, степень сопряжения ТД 
и ОФ.

Оценку соотношения основных субстратов ТД 
проводили методом ингибиторного анализа, вводя 
в ячейку амитал (ингибитор 1 комплекса ДЦ) и ма­
лонат (конкурентный ингибитор сукцинатДГ). На 
основании этих данных рассчитывали показатели 
амителрезистентного дыхания (АРД) и малонатре­
зистентного дыхания (МРД): АРД = Vам/Vэнд; 
МРД = Vмал/Vам [17]. 

Статистическую обработку эксперименталь­
ных данных выполняли с использованием про­
грамм Microsoft Exel, 2018, «Statistica», 7.0. Дан­
ные представлены в таблицах в виде медианы и 
квартилей [Q1; Q3]. Для сравнения независимых 
переменных применяли критерий Манна – Уитни 
и поправку на множественные сравнения Бенджа­
мини-Хохберга FDR (False Discovery Rate). Разли­
чия между контрольной и опытными группами 
считались статистически достоверными при 
p < 0,05.

Результаты и их обсуждение 
После внешнего облучения в дозе 0,5 и 1 Гр 

наблюдали изменение параметров тканевого дыха­
ния фрагментов тонкого кишечника на эндогенных 
и экзогенных (янтарная и глутаминовая кислоты) 
субстратах в опытных группах по сравнению с 
контролем (таблица 1).

Таблица 1 – Показатели субстратного дыхания слизистой тонкого кишечника крыс после разового внешнего 
облучения (Ме [25 %; 75 %])
Table 1 – Parameters of substrate respiration in rat small intestinal mucosa after single external gamma irradiation 
(Median [25th–75th percentile])

Показатель Контроль 3 сутки после облучения 10 сутки после облучения
Доза 0,5 Гр Доза 1 Гр Доза 0,5 Гр Доза 1 Гр

Vэнд
нмоль O2/ мин×белка

9,44
[7,21;12,87] 

n = 53

5,00***
[3,58;7,00]

n = 40

6,01***
[4,84;7,15]

n = 38

10,90
[9,70;13,60] 

n = 27

14,70**
[8,74;22,22]

n = 38
Vяк
нмоль O2/ мин×белка

12,44 
[9,99;14,19]

n = 15

7,94*
[6,45;12,20]

n = 10

9,41
[8,55;12,21]

n = 11

12,70 
[10,60;14,60]

n = 10

14,97 
[10,46;23,20]

n = 11
Vглу
нмоль O2/ мин×белка

11,95 
[9,70;13,50]

n = 12

7,42**
[6,24;8,70]

n = 10

6,69**
[5,34;8,41]

n = 11

9,20
[7,80;12,00]

n = 10

10,55 
[2,56;12,05]

n = 11

* p < 0,05. 
** p < 0,01.
*** p < 0,001.

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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На третьи сутки после облучения выявлено до­
стоверное снижение показателя эндогенного ды­
хания: на 47 % от контроля после воздействия 
0,5 Гр и на 36 % после 1Гр. Также отмечалось зна­
чительное уменьшение интенсивности потребле­
ния кислорода при внесении в полярографическую 
ячейку экзогенного сукцината и глутамата в опыт­
ных группах по сравнению с контролем, так для 
янтарной кислоты на 36 % при воздействии 0,5 Гр 
и на 24 % – при 1 Гр, а для глутаминовой на 38 % 
и 44 % соответственно. 

Существенное достоверное угнетение скорости 
эндогенного дыхания в обеих группах эксперимен­
тальных животных в ранние сроки после воздей­
ствия возможно связано, с истощением внутрикле­
точных субстратов митохондриального окисления 
или количества клеток слизистой кишечника из-за 
влияния внешнего γ-облучения в изучаемых дозах.

На десятые сутки для групп с дозами облучения 
0,5 и 1,0 Гр наблюдалась стимуляция дыхательной 
активности на эндогенных субстратах и потребле­
ние кислорода тканью кишечника увеличивалось на 
16 % и 56 % по сравнению с контрольной группой. 
Вполне вероятно, что это может быть связано с уси­
лением репаративных процессов, сопровождаю­
щихся увеличением кровоснабжения и оксигенации 
кишечника в указанные сроки после облучения. 
Кроме того, есть все основания полагать, что при 
данном воздействии активируется фагоцитоз — 
процесс, связанный с элиминацией погибших кле­
ток и их отдельных структур, сопровождающийся 
«респираторным взрывом» — резким увеличением 
потребления кислорода фагоцитирующими клетка­
ми [18, 19]. При введении янтарной кислоты данная 
тенденция была менее выражена: рост составил 
2 % и 19 % для опытных групп. Однако при внесе­
нии в ячейку глутаминовой кислоты подобного уси­
ления тканевого дыхания не 
отмечалось, зафиксировано 
угнетение скорости митохон­
дриального окисления в опыте 
на 23 % и 13 % по сравнению 
с контролем. 

Основные характеристики 
митохондриального окисле­
ния кишечной слизистой по­
сле внешнего облучения до­
полняет расчёт коэффициен­
тов стимулирующего действия 
для экзогенных субстратов 
(таблица 2).

В контрольной группе при 
введении в систему экзоген­
ных субстратов дыхания ин­
тенсивность митохондриаль­

ного окисления возрастает. Янтарная и глутамино­
вая кислоты обладают выраженным активирующим 
действием на потребления кислорода тканью. 

На третьи сутки после облучения было выявле­
но усиление стимулирующего действия янтарной 
кислоты на 34 % в обеих опытных группах, для 
глутаминовой кислоты повышение составило 11% 
при воздействии 0,5 Гр и 8 % – при 1 Гр. Это может 
указывать на возрастание роли янтарной кислоты 
в энергетике тонкого кишечника на ранних сроках 
после облучения. Увеличение активности сукци­
натдегидрогеназы при данных дозах имеет выра­
женный характер, что может отражать поврежде­
ние или адаптивную перестройку энергетического 
метаболизма.

В более поздний срок наблюдения отмечалась 
тенденция к снижению коэффициентов стимули­
рующего действия субстратов, которая усилива­
лась с увеличением дозы облучения, так в опытной 
группе на десятые сутки после облучения 1 Гр до­
полнительное введение экзогенных субстратов 
тканевого дыхания не оказывало стимулирующего 
влияния на интенсивность потребления кислорода 
тканью тонкого кишечника. Известно, что клетки 
слизистой тонкого кишечника интенсивно обнов­
ляются и активно используют глутамат для энер­
гетических и пластических нужд. Глутамин необ­
ходимый субстрат для поддержания структуры и 
функции кишки, особенно при патологических 
состояниях, когда происходит повреждение слизи­
стой оболочки. Именно глутаминовая кислота, яв­
ляющаяся предшественником альфа-кетоглутара­
та в цикле Кребса, – главный поставщик энергии 
для кишечных клеток. В физиологических усло­
виях, окисление глутамина дает около трети энер­
гии в энтероцитах, при патологических реакциях 
его окисление может увеличиваться [20]. Мы пред­

Таблица 2 – Коэффициенты стимулирующего действия субстратов 
тканевого дыхания (Ме [25 %; 75 %])

Table 2 – Substrate-induced stimulation ratios of tissue respiration (Median 
[25th–75th percentile])

Показатель Контроль
3 сутки после облучения 10 сутки после облучения

Доза 0,5 Гр Доза 1 Гр Доза 0,5 Гр Доза 1 Гр

СДяк 1,21
[1,07;1,48]

n = 15

1,62*
[1,35;2,20]

n = 10

1,61*
[1,41;1,90]

n = 11

1,30
[1,01;2,10]

n = 10

1,04
[0,81;1,70]

n = 11
СДглу 1,19

[1,12;1,38]
n = 12

1,32
[1,09;1,70]

n = 10

1,29
[1,10;1,40]

n = 11

1,20
[1,00;1,30]

n = 10

0,95
[0,51;1,47]

n = 11

* p < 0,05. 

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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полагаем, что при радиационном воздействии 
именно путь окисления глутамата наиболее уязви­
мым и, как следствие, снижение дыхательной ак­
тивности опытных группах по сравнению с кон­
тролем.

Полученные данные по влиянию разобщителя 
ОФ 2,4-динитрофенола (2,4-ДНФ) на интенсив­
ность ТД тонкого кишечника в ранние сроки после 
облучения животных в дозах 0,5 Гр и 1 Гр пред­
ставлены в таблице 3.

В экспериментальных группах не было выявле­
но достоверного разобщающего действия 2,4-ди­
нитрофенола на дыхательную цепь в кишечной 
ткани. Наблюдали тенденцию к усилению ткане­
вого дыхания в присутствии разобщителя на тре­

тьи сутки, но на десятые сутки после облучения в 
обеих опытных группах разобщитель оказывал 
ингибирующее влияние на интенсивность мито­
хондриального окисления. Коэффициент стимули­
рующего действия 2,4-ДНФ был снижен на 22 % 
при воздействии 1 Гр. Уменьшение коэффициента 
СДднф на десятые сутки в обеих опытных указы­
вает на то, что под действием γ-облучения целост­
ность внутренней митохондриальной мембраны 
нарушается и митохондрии не способны к ОФ, в 

таком случае динитрофе­
нол уже не оказывает вли­
яния на степень сопряже­
ния. Разобщение дыхания 
и фосфорилирования под 
действием ионизирующе­
го облучения понижает эф­
фективность энергообра­
зования, но поглощение 
кислорода при этом суще­
ственно усиливается, акти­
вируются механизмы гене­
рации активных форм кис­
лорода митохондриями, 
что усиливает повреждаю­
щее влияние на ткань.

Эффекты от действия специфических ингиби­
торов 1 и 2 комплексов дыхательной цепи на ми­
тохондриальное окисление исследуемой ткани 
после разового внешнего облучения отражены в 
таблице 4.

Таблица 3 – Показатели сопряжения тканевого дыхания и окислительного 
фосфорилирования слизистой тонкого кишечника крыс после разового 
внешнего облучения (Ме [25 %; 75 %])

Table 3 – Coupling parameters of tissue respiration and oxidative phosphorylation 
in rat small intestinal mucosa after single external gamma irradiation (Median 
[25th–75th percentile])

Показатель Контроль 3 сутки после облучения 10 сутки после облучения
Доза 0,5 Гр Доза 1 Гр Доза 0,5 Гр Доза 1 Гр 

Vднф
нмоль O2/ 
мин×белка

11,57 
[6,07;15,42]

n = 16

5,22
[4,94;8,20]

n = 10

7,94
[7,22;9,40]

n = 11

9,40
[7,00;11,30]

n = 10

9,24
[7,56;14,89]

n = 11
СДднф 1,13

[0,84;1,23]
n = 16

1,21
[1,06;1,30]

n = 10

1,26
[1,16;1,50]

n = 11

1,10
[0,70;1,40]

n = 10

0,88
[0,72;1,46]

n = 11

Таблица 4 – Изменение параметров ингибиторного анализа дыхания ткани кишечника после разового внешне­
го облучения (Ме [25 %; 75 %])

Table 4 – Changes in inhibitory analysis parameters of intestinal tissue respiration after single external gamma 
irradiation (Median [25th–75th percentile])

Показатель Контроль 3 сутки после облучения 10 сутки после облучения
Доза 0,5 Гр Доза 1 Гр Доза 0,5 Гр Доза 1 Гр

Vам
нмоль O2/ мин×белка

10,01
[3,39;13,6]

n = 28

4,89**
[3,28;6,8]

n = 10

8,09
[7,24;8,60]

n = 10

9,2
[8,20;10,1]

n = 10

7,63
[5,34;9,11]

n = 11
АРД 0,85 [0,77;0,96] 

n = 28
1,03

[0,82;1,22]
n = 10

0,89
[0,82;1,00]

n = 11

1,1
[0,90;1,3]

n = 10

0,72
[0,25;0,92]

n = 11
Vмал
нмоль O2/ мин×белка

8,30
[5,63;10,80]

n = 28

5,04*
[3,46;6,09]

n = 10

6,70
[5,80;7,30]

n = 11

7,1
[5,50;7,90]

n = 10

3,88*
[1,28;6,82]

n = 11
МРД 0,79 [0,71;0,90]

n = 28
0,96*

[0,84;1,06]
n = 10

0,86
[0,81;0,90]

n = 11

0,80
[0,5;0,90]

n = 10

0,55
[0,23;0,88]

n = 11

* p < 0,05. 
** p < 0,01.

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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Ингибиторный анализ показал, что разовое 
внешнее облучение влияет на распределение и 
концентрацию субстратов тканевого дыхания в 
митохондриальном матриксе. В зависимости от 
дозы внешнего облучения и времени после воздей­
ствия наблюдали изменение соотношения окисля­
ющихся субстратов I и II комплексов митохондри­
альной дыхательной цепи ткани кишечника. На 
третьи сутки при воздействии 0,5 Гр обнаружили 
увеличение коэффициентов АРД и МРД на 20 % и 
22 % от контрольных значений, показатели оста­
вались повышенными и в более поздние сроки из­
учения. Снижение эффекта ингибирования кос­
венно подтверждает выявленные ранее изменения 
субстратного дыхания, а именно снижение интен­
сивности окисления глутамата, связанного с его 
дефицитом в матриксе митохондрии. В таких усло­
виях существенно активируется использование 
жирных кислот, как основного энергетического 
донора.  При дозе 1 Гр на третьи сутки не наблю­
дали значимых изменений амитал- и малонатрези­
стентного дыхания, однако на десятые – обнару­
жили существенное снижение значений АРД и 
МРД на 15 % и 30 % соответственно по сравнению 
с контрольной группой. Можно предположить, что 
происходит усиление окисления субстратов I и II 
комплексов ДЦ, возрастает активность фермента 
сукцинатдегидрогеназы, снижается использование 
жирных кислот в качестве доноров восстановлен­
ных эквивалентов в электрон транспортную цепь.

Все экспериментальные данные были получе­
ны нами при работе с тканевыми фрагментами 
кишечника. Они минимально повреждены, в них 
сохранена архитектоника ткани, взаимодействия 
между органеллами и т.д., что способствует под­
держанию в тканевом препарате концентрации 
дыхательных субстратов, регуляторов и кислорода 
близких к физиологическим. Кроме того, кишеч­
ная ткань отличается гетерогенностью, состоящей 
из динамично изменяющихся клеток, находящихся 
на разных стадиях пролиферации, дифференци­
ровки, старения и отмирания, при этом каждая 
клеточная субпопуляция значительно отличается 
по биохимическим параметрам, в том числе мито­
хондриальному окислению [21]. Такой объект ис­
следования является наиболее объективным и ин­
формативным, что позволяет оценить не только 
интенсивность дыхания и активность полифер­
ментных комплексов ДЦ митохондрий, но также 
состояние митохондриальных мембран, контроли­
рующих поступление и утилизацию метаболитов 
[17, 22].

Полученные нами результаты показывают, что 
γ-облучение в изучаемых дозах негативно влияет 
на энергетический обмен в ткани тонкого кишеч­

ника лабораторных крыс. Высокий уровень проли­
ферации способен обеспечить непрерывное об­
новление энтероцитов и их внутриклеточных 
структур. Однако, при облучении возможно также 
повреждение криптогенных клеток слизистой, за­
держка митоза, нарушение миграции из глубины 
крипты к вершине ворсинок, в связи с чем проис­
ходит неполное восстановление эпителиального 
слоя, результатом могут явиться нарушения основ­
ных функций кишечной слизистой. Эффектив­
ность репаративных процессов, являющаяся ис­
ключительно энергозатратным механизмом, зави­
сит от состояния митохондриального окисления 
ткани: высокой активности оксидазных систем 
дыхательной цепи митохондрий и эффективности 
работы всех точек сопряжения окисления и фос­
форилирования. Снижение уровня АТФ в кишеч­
ной стенке и изменения в метаболических путях 
могут сопровождается снижением барьерных 
свойств ткани, приводя к транслокации микроор­
ганизмов и их токсинов, возникновению воспали­
тельных процессов и других патологических со­
стояний. 

Заключение
Радиационно-индуцированные изменения 

энергетического метаболизма ткани кишечника 
при воздействии внешнего γ-облучения в дозе 0,5 
и 1 Гр проявляются снижением скорости тканево­
го дыхания на эндогенных и экзогенных субстра­
тах на 3-и сутки после облучения, разобщением 
окислительного фосфорилирования и изменением 
активности I и Ⅱ комплексов дыхательной цепи и 
последующей стимуляцией митохондриальной ак­
тивности на 10-е сутки. При радиационном воз­
действии путь окисления глутамата наиболее уяз­
вимым Степень выраженности ответных реакций 
со стороны системы митохондриального окисле­
ния зависит от дозы внешнего облучения и време­
ни после радиационного воздействия. Под дей­
ствием γ-облучения в изучаемых дозах снижается 
способность митохондрий ткани кишечника к ОФ, 
угнетается активность ферментных систем элек­
трон-транспортной цепи, что сопровождается дис­
социацией электрохимического потенциала и от­
сутствием энергетического сопряжения в изучае­
мые сроки после облучения. Изменение 
энергетического статуса клеток слизистой кишеч­
ника и нарушение функциональной сохранности 
митохондрий может быть одной из причин постра­
диационных структурно-функциональных нару­
шений в ткани тонкого кишечника.

Конфликт интересов. Авторы заявляют об от­
сутствии конфликта интересов.
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ENERGETIC METABOLISM STATE OF SMALL INTESTINE TISSUE 
IN LABORATORY RATS AFTER SINGLE EXTERNAL 

Γ-RADIATION EXPOSURE

N. S. Myshkavets1, A. S. Babenka2, L. N. Alekseiko1, O. E. Kuzniatsou3

1Gomel State Medical University, Gomel, Belarus;
2Republican Scientific and Practical Center “Cardiology”, 

Minsk, Belarus;
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of Belarus, Grodno, Republic of Belarus

Background. This article describes the key parameters of mitochondrial respiration and oxidative phosphor­
ylation in the small intestine tissue of laboratory animals (Wistar rats) following single external radiation exposure. 
High respiratory activity of the small intestine tissue was observed on both endogenous and exogenous substrates.

Objective. To assess the functional state of the mitochondrial electron transport chain in intestinal fragments 
of laboratory rats after single external irradiation at doses of 0.5 and 1 Gy.

Material and Methods. Two groups of male Wistar rats weighing 180–220 g were irradiated once using the 
“IGUR-1” setup with a 137Cs source at doses of 0.5 and 1 Gy (dose rate: 0.92 Gy/min). On days 3 and 10 post-irra­
diation, a portion of the small intestine was isolated, washed, and turned inside out. Mitochondrial oxidation param­
eters of intestinal tissue fragments were studied using polarography.

Results. On day 3 after irradiation, a statistically significant (p = 0.001) decrease in endogenous respiration 
was observed, along with reduced oxygen consumption upon addition of exogenous substrates (p = 0.05). By day 
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10, respiratory activity was stimulated, but further addition of exogenous substrates did not enhance oxygen con­
sumption. No uncoupling effect of 2,4-dinitrophenol on the respiratory chain in intestinal tissue was detected. Inhib­
itory analysis indicated that irradiation at doses of 0.5 and 1 Gy affects substrate entry into the respiratory chain.

Conclusions. Single γ-irradiation leads to significant changes in the energetic metabolism of small intestine 
tissue in laboratory rats.

Keywords: Tissue respiration, intestine, mitochondria, external irradiation, oxidative phosphorylation, respi­
ratory chain.
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