DOI: 10.36488/cmac.2024.1.31-39

Оригинальная статья

Микробиологическая активность тиамфеникола и тиамфеникола глицината ацетилцистеината в отношении клинически значимых микроорганизмов и образуемых ими биопленок

Карпова Е.В.¹, Колчанова Н.Э.¹, Петровская Т.А.¹, Тапальский Д.В.²

- ¹ УО «Гомельский государственный медицинский университет», Гомель, Беларусь
- ² ГНУ «Институт физиологии НАН Беларуси», Минск, Беларусь

Контактный адрес: Дмитрий Викторович Тапальский Эл. почта: tapalskiy@yandex.ru

Ключевые слова: тиамфеникол, хлорамфеникол, N-ацетилцистеин, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, биопленка.

Конфликт интересов: статья подготовлена при финансовой поддержке компании Zambon. В статье выражена позиция авторов, которая может отличаться от позиции компании Zambon.

Внешнее финансирование: исследование проведено при финансовой поддержке компании Zambon.

Цель. Определить минимальные подавляющие концентрации тиамфеникола и тиамфеникола глицината ацетилцистеината в отношении клинически значимых микроорганизмов и определить эффективность их воздействия на микроорганизмы в составе биопленок.

Материалы и методы. В исследование включены 48 клинических изолятов микроорганизмов, выделенных из мокроты пациентов с инфекциями дыхательных путей (по 16 изолятов *S. pneumoniae*, *K. pneumoniae* и *S. aureus*). Определение чувствительности к антибиотикам выполнено методом последовательных микроразведений в бульоне. Оценку интенсивности образования микробных биопленок в присутствии антибиотиков, N-ацетилцистеина и их комбинаций выполняли в 96-луночных планшетах в бульоне Мюллера-Хинтон и сердечно-мозговом бульоне с фиксацией биопленок 2,5% раствором глютаральдегида, окрашиванием 0,25% раствором кристаллического фиолетового и экстракцией красителя 33% раствором уксусной кислоты.

Результаты. Значения МПК тиамфеникола и тиамфеникола глицината ацетилцистеината (в пересчете на тиамфеникол) совпадали для 87.5% штаммов. Показана высокая микробиологическая активность тиамфеникола и тиамфеникола глицината ацетилцистеината в отношении штаммов S. pneumoniae (МПК $_{50}$ 0,5 мг/л, МПК $_{90}$ 1–2 мг/л). Обработка хлорамфениколом, тиамфениколом, тиамфениколо глицинатом ацетилцистеинатом, комбинацией хлорамфеникола и тиамфеникола с N-ацетилцистеином приводила к значимому снижению значений оптической плотности биопленок S. pneumoniae. Добавление тиамфеникола увеличивало интенсивность биопленкообразования у ряда устойчивых к нему штаммов S. aureus и K. pneumoniae, дополнительное внесение N-ацетилцистеина нивелировало данный эффект.

Выводы. Показано потенцирование антибактериальной активности тиамфеникола в присутствии N-ацетилцистеина в отношении биопленок, образованных штаммами *S. pneumoniae*.

Original Article

Microbiological activity of thiamphenical and thiamphenical glycinate acetylcysteinate against clinically significant microorganisms and their biofilms

Karpova E.V.¹, Kolchanova N.E.¹, Petrovskaya T.A.¹, Tapalski D.V.²

- ¹ Gomel State Medical University, Gomel, Belarus
- ² Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus

Contacts: Dmitry V. Tapalski E-mail: tapalskiy@yandex.ru

Key words: thiamphenicol, chloramphenicol, N-acetylcysteine, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, biofilm.

Conflicts of interest: this article is supported by Zambon. The opinion expressed in the article is that of the authors and may not reflect the opinions of Zambon.

External funding source: the study was supported by Zambon.

Objective. To determine the minimum inhibitory concentrations of thiamphenical and thiamphenical glycinate acetylcysteinate against clinically significant microorganisms and determine their efficacy against microbial biofilms.

Materials and methods. This study included 48 clinical strains isolated from the sputum of patients with respiratory tract infections (16 *S. pneumoniae, K. pneumoniae* and *S. aureus* strains). Antimicrobial susceptibility testing was performed using broth microdilution method. Biofilm formation culturing with antibiotics, N-acetylcysteine and their combinations was assessed in Mueller-Hinton broth and brain heart broth in 96-well plates. Biofilms are fixed with 2,5% glutaraldehyde solution, stained with 0,25% crystal violet solution, which is extracted by 33% acetic acid solution.

Results. The MIC of thiamphenicol and thiamphenicol glycinate acetylcysteinate (in terms of thiamphenicol) were the same for 87,5% of strains. Thiamphenicol and thiamphenicol glycinate acetylcysteinate have been confirmed high antimicrobial activity against *S. pneumoniae* strains (MIC₅₀ 0,5 mg/l, MIC₉₀ 1-2 mg/l). Cultivation with chloramphenicol, thiamphenicol, thiamphenicol glycinate acetylcysteinate, combination of chloramphenicol and thiamphenicol with N-acetylcysteine contributed to significant reduction in the

Карпова Е.В. и соавт.

АНТИМИКРОБНЫЕ ПРЕПАРАТЫ KMAX · 2024 · Том 26 · №1

optical density of *S. pneumoniae* biofilms. Thiamphenicol increased biofilm formation in some resistant *S. aureus* and *K. pneumoniae*. Combination based on N-acetylcysteine neutralized this effect. **Conclusions.** Potentiation of antibacterial activity of thiamphenicol by N-acetylcysteine against *S. pneumoniae* biofilms has been shown.

Введение

Тиамфеникол – антибиотик синтетического происхождения из группы амфениколов, является метилсульфонильным аналогом хлорамфеникола. Механизм действия тиамфеникола заключается в ингибировании трансляции белка путем блокирования связи мРНК с рибосомами, что препятствует их функционированию. В спектр антибактериальной активности тиамфеникола входят стафилококки, стрептококки (включая Streptococcus pneumoniae), клостридии, Bacteroides spp., Corynebacterium diphtheriae, Listeria monocytogenes, Bordetella pertussis, Haemophilus influenzae, Brucella spp., нейссерии и энтеробактерии. Отмечена активность тиамфеникола в отношении внутриклеточных микроорганизмов [1]. По своей антибактериальной эффективности он превосходит хлорамфеникол, при этом лишен ряда недостатков последнего [2]. Тиамфеникол является единственным антибиотиком в группе амфениколов, не имеющим гематологической токсичности. Тиамфеникол активен в отношении многих штаммов, устойчивых к бета-лактамным антибиотикам. Чувствительность S. pneumoniae, H. influenzae, Chlamydophila pneumoпіае (основных возбудителей респираторных инфекций) к нему выше, чем к макролидам, тетрациклинам и ко-тримоксазолу. В российском исследовании отмечена высокая in vitro активность тиамфеникола в отношении штаммов Н. influenzae, S. pneumoniae и Streptococcus pyogenes, включая штаммы S. pneumoniae со сниженной чувствительностью к пенициллину и устойчивостью к макролидам [3].

Глицинат тиамфеникола – модификация тиамфеникола с лучшей растворимостью и биодоступностью, предназначенная для парентерального и ингаляционного использования. Тиамфеникол также используется в виде глицината ацетилцистеината (ТГА). Этот сложный эфир после введения парентеральным или аэрозольным путем гидролизуется тканевыми эстеразами с высвобождением тиамфеникола и N-ацетилцистеина (NAC) [4]. ТГА обладает сочетанным противомикробным и муколитическим действием и используется для лечения заболеваний органов дыхания, вызванных чувствительными к тиамфениколу микроорганизмами и сопровождающихся образованием секрета [5, 6].

Предполагается, что острые инфекции связаны преимущественно с планктонными бактериями, которые обычно поддаются лечению антибиотиками. Однако в тех случаях, когда бактериям удается сформировать биопленку в макроорганизме, инфекция переходит в хроническую форму и часто приобретает устойчивость к стандартным схемам терапии [7, 8]. Для практического здравоохранения формирование микробных биопленок представляет определенную опасность, снижая эффективность проводимой терапии и увеличивая затраты на лечение [9]. Показано, что эффективность системных антибиотиков в элиминации биопленок недостаточна, что привело к повышенному интересу к альтернативным стратегиям антимикробного воздействия [10-13]. Перспективными являются исследования в области разработки способов предотвращения формирования биопленок, а также разрушения уже сформированных респираторными патогенами биопленок [13].

Цель исследования – определить минимальные подавляющие концентрации тиамфеникола и тиамфеникола глицината ацетилцистеината в отношении клинически значимых микроорганизмов и определить эффективность их воздействия на микроорганизмы в составе биопленок.

Материалы и методы

В исследование были включены 16 клинических изолятов S. pneumoniae, выделенных из мокроты амбулаторных и стационарных пациентов в г. Гомеле, а также 16 клинических изолятов Klebsiella pneumoniae и 16 изолятов Staphylococcus aureus, выделенных из мокроты госпитализированных пациентов с инфекциями дыхательных путей в нескольких регионах Беларуси (Витебск, Гомель, Могилев, Минск). Отобранные штаммы были выделены в 2021-2023 гг. в диагностически значимых количествах. Первичная идентификация и определение чувствительности к антибиотикам была выполнена в локальных микробиологических лабораториях с использованием автоматических микробиологических анализаторов. До проведения исследований штаммы подвергались криоконсервации и хранились в сердечно-мозговом бульоне с добавлением 30% глицерина при температуре -62°C. В исследование также включены 4 контрольных штамма: S. aureus ATCC 29213, S. pneumoniae ATCC 49619, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853.

Определение чувствительности планктонных форм микроорганизмов к антибиотикам проводили методом микроразведений в бульоне в соответствии с ISO 20776-1:2006 [14].

Для определения способности микроорганизмов к образованию биопленки применяли методику Stepanovic S. и соавт. с незначительными модификаци-

КМАХ · 2024 · Том 26 · №1

ями [15]. В основе метода лежит способность микроорганизмов формировать биопленку на стенках и дне лунок полистиролового планшета и использование растворов красителей для окрашивания элементов биопленки с последующим учетом результатов. Из чистой 18-24-часовой культуры, выросшей на плотной неселективной питательной среде (триптон-соевый агар, кровяной агар), готовили микробную суспензию в стерильном изотоническом растворе хлорида натрия. Оптическую плотность суспензии доводили до 0,5 единиц по стандарту мутности МакФарланда. В лунки 96-луночного плоскодонного полистиролового планшета вносили по 150 мкл бульона Мюллера-Хинтон (Oxoid, Великобритания) и 1 мкл бактериальной суспензии, стартовая концентрация микробных клеток в бульоне составляла 10⁶ КОЕ/мл. Для определения способности к образованию биопленки штаммами S. pneumoniae в качестве бульонной питательной среды использовали сердечно-мозговой бульон (Becton Dickinson, Франция). Исследование выполняли в 3 повторах, на один изолят отводили 3 лунки ряда. Отрицательным контролем служили лунки с 150 мкл бульона Мюллера-Хинтон без бактерий. Планшеты инкубировали при 35°C в течение 48 ч.

После инкубации лунки четырехкратно промывали при помощи автоматической мойки, вносили по 150 мкл дистиллированной воды на одну лунку на один цикл. Биопленку фиксировали путем добавления в лунки по 160 мкл 2,5% раствора глютаральдегида (экспозиция в течение 5 мин.). Планшет четырехкратно промывали, используя по 200 мкл дистиллированной воды на одну лунку на один цикл, после чего вносили по 180 мкл 0,25% раствора кристаллического фиолетового на 5 мин. Планшет снова четырехкратно промывали, используя по 200 мкл дистиллированной воды на одну лунку на один цикл, и высушивали в течение 10 мин. Для экстракции сорбированного красителя из биопленки в лунки добавляли по 200 мкл 33% раствора уксусной кислоты, экспозиция при комнатной температуре 10 мин. Оптическую плотность (OD) в лунках определяли на многофункциональном микропланшетном ридере Infinite M200 (TECAN, Швейцария) при длине волны 570 нм.

Значение оптической плотности биопленки (ОПБ) рассчитывали по формуле:

$$\label{eq:one} \mathsf{O\PiB} = \frac{\mathsf{O\Pi}_1 + \mathsf{O\Pi}_2 + \mathsf{O\Pi}_3 - \mathsf{O\Pi}\kappa_1 - \mathsf{O\Pi}\kappa_2 - \mathsf{O\Pi}\kappa_3}{3}\,,$$

где ОПБ – оптическая плотность биопленки; ОП $_1$, ОП $_2$ и ОП $_3$ – оптическая плотность лунок с тестируемым штаммом; ОП $_1$, ОП $_2$ и ОП $_3$ – оптическая плотность лунок контроля.

При получении отрицательного значения, его представляли как ноль, любое положительное значение указывало на образование биопленки.

Ввиду высокой вариабельности значений ОПБ, полученных для штаммов *S. aureus* и *K. pneumoniae*, с разной интенсивностью биопленкообразования, анализировался индекс биопленкообразования – отношение ОПБ

обработанных биопленок к ОПБ необработанных контролей, выраженное в %:

ИБ = ОПБа / ОПБк
$$\times$$
 100,

где ИБ – индекс биопленкообразования; ОПБа – оптическая плотность биопленки, культивированной при добавлении антибиотиков и/или NAC; ОПБк – оптическая плотность биопленки в контроле.

Оценку влияния антибиотиков и NAC на интенсивность образования микробной биопленки проводили в 96-луночных плоскодонных полистироловых планшетах. Из базовых растворов с концентрацией 10 мг/мл готовили рабочие растворы, в качестве разбавителя использовали бульон Мюллера-Хинтон (для оценки влияния на биопленкообразование грамотрицательных бактерий и S. aureus) или сердечно-мозговой бульон (для оценки влияния на биопленкообразование S. pneumoniae). Концентрация хлорамфеникола и тиамфеникола в рабочих растворах составила 8 мкг/мл, что соответствует значению эпидемиологической точки отсечения (ECOFF) хлорамфеникола для S. pneumoniae. Концентрация тиамфеникола глицината ацетилцистеината составила 13 мкг/мл, или 8 мкг/мл в пересчете на тиамфеникол. Концентрация NAC составила 5 мкг/мл. В лунки планшета вносили по 150 мкл рабочего раствора на основе бульона Мюллера-Хинтон (Oxoid, Великобритания) или сердечно-мозгового бульона, с добавлением NAC, антибиотика, или их комбинации, а также 1 мкл бактериальной суспензии (0,5 единиц по стандарту мутности МакФарланда). Исследование выполняли в 3 повторах, на один изолят отводили 3 лунки ряда. Отрицательным контролем служили лунки с 150 мкл бульона Мюллера-Хинтон (или сердечно-мозгового бульона) без бактерий. Планшеты инкубировали при 35°C в течение 48 ч., далее оценивали ОПБ.

Для оценки влияния антибиотиков и NAC на уже сформированные микробные биопленки в лунки планшета вносили 150 мкл сердечно-мозгового бульона, инокулированного S. pneumoniae (106 КОЕ/мл), и инкубировали при 35°C в течение 48 ч. Планктонные клетки осторожно удаляли, лунки трехкратно промывали подогретым до 35°C изотоническим раствором хлорида натрия в объеме 150 мкл на каждый цикл отмывки, и вносили рабочие растворы антибиотиков в сердечно-мозговом бульоне (по 150 мкл на лунку). После суточной инкубации выполняли дезинтеграцию биопленок и количественную оценку входящих в их состав живых клеток. Из полученных микробных суспензий готовили 10-кратные серийно убывающие разведения в изотоническом растворе хлорида натрия (1:10 – 1:10000000). Делали высев 10 мкл из каждого разведения на сектор кровяного агара с последующей инкубацией при 35°C в течение 18 ч. и количественным учетом роста.

Статистический анализ результатов исследования был выполнен с использованием аналитического пакета «Statistica» (v10-Index, лицензия № STAФ999K347156W,

АНТИМИКРОБНЫЕ ПРЕПАРАТЫ KMAX · 2024 · Том 26 · №1

StatSoft Inc, США). Тип распределения количественных признаков определяли на основе критерия Шапиро-Уилка. При распределении признака, отличном от нормального, вычисляли медиану (Ме), нижний 25-й (LQ) и верхний 75-й квартили (UQ). Для оценки статистической значимости между несвязанными группами использовался критерий Манна-Уитни [16].

Результаты

Минимальные подавляющие концентрации антибиотиков

Диапазоны распределения минимальных подавляющих концентраций (МПК), значения МПК $_{50}$ и МПК $_{90}$ приведены в Таблице 1. В соответствии с пограничными значениями EUCAST, чувствительность к хлорамфениколу сохраняли 62,5% штаммов S. aureus. Все штаммы S. pneumoniae имели значения МПК хлорамфеникола ниже порогового значения ECOFF 8 мг/л и были отнесены к дикому типу. Значения МПК тиамфеникола и тиамфеникола глицината ацетилцистеината (в пересчете на тиамфеникол) совпадали для 42 из 48 включенных в исследование штаммов, еще для 6 штаммов отличались на одно двукратное разведение. Значения МПК хлорамфеникола и тиамфеникола глицината ацетилцистеината (в пересчете на тиамфеникол) совпадали только для 9 из 48 включенных в исследование штаммов, для остальных штаммов они были выше в 2-4 раза.

Влияние N-ацетилцистеина и его комбинаций с антибиотиками на формирование биопленок *S. pneumoniae*, *S. aureus* и *K. pneumoniae*

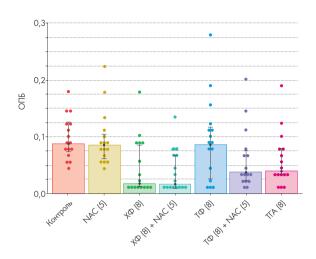
Свойство формировать биопленки было выявлено у большинства протестированных изолятов. Наибольшей способностью к биопленкообразованию характеризовались К. pneumoniae и S. aureus. Значения ОПБ для штаммов S. pneumoniae, S. aureus и К. pneumoniae, представленные в виде Ме [Q1; Q3], приведены в Таблице 2.

Обработка NAC не оказывала значимого влияния на ОПБ *S. pneumoniae*. Обработка хлорамфениколом,

Рисунок 1. ОПБ S. pneumoniae (n = 16), обработанных антибиотиками, NAC и их комбинациями

NAC – N-ацетилцистеин; $X\Phi$ – хлорамфеникол; $T\Phi$ – тиамфеникол; TFA – тиамфеникола глицинат ацетилцистеинат.

В круглых скобках указана концентрация в мг/л.


тиамфениколом, тиамфеникола глицинатом ацетилцистеинатом, комбинациями хлорамфеникола и тиамфеникола с NAC приводила к значимому снижению значений ОПБ (Рисунок 1).

Для биопленок *S. pneumoniae*, выращенных в присутствии комбинации тиамфеникола с NAC и тиамфеникола глицината ацетилцистеината, полученные значения ОПБ были значимо ниже, чем для биопленок, выращенных в присутствии только тиамфеникола. В присутствии NAC значения ОПБ для штаммов *S. aureus* и *K. pneumoniae* значимо не отличались от необработанных контролей. При культивировании биопленок *S. aureus* значения ОПБ значимо снижались в присутствии хлорамфеникола, хлорамфеникола и NAC, тиамфеникола и NAC, тиамфеникола глицината ацетилцистеината (Рисунок 2). Добавление антибиотиков и их комбинаций с NAC не приводило к статистически значимому снижению значений ОПБ для биопленок, формируемых штаммами *К. pneumoniae* (Рисунок 3).

Таблица 1. Значения МПК антибиотиков для S. pneumoniae, S. aureus и K. pneumoniae

Микроорганизм	Антибиотик	Диапазон МПК, мг/л	МПК₅о, мг/л	МПК ₉₀ , мг/л
S. pneumoniae	хлорамфеникол	0,06–1	0,5	1
	тиамфеникол	0,125–2	0,5	1
	тиамфеникола глицинат ацетилцистеинат	0,125–2	0,5	2
S. aureus	хлорамфеникол	4–128	8	128
	тиамфеникол	8–512	32	512
	тиамфеникола глицинат ацетилцистеинат	8–512	32	512
K. pneumoniae	хлорамфеникол	4–512	32	512
	тиамфеникол	8–512	64	512
	тиамфеникола глицинат ацетилцистеинат	8–512	128	512

Карпова Е.В. и соавт.

Рисунок 2. ОПБ *S. aureus* (n = 16), обработанных антибиотиками, NAC и их комбинациями

NAC – N-ацетилцистеин; $X\Phi$ – хлорамфеникол; $T\Phi$ – тиамфеникол; TFA – тиамфеникола глицинат ацетилцистеинат.

В круглых скобках указана концентрация в мг/л.

В дальнейшем штаммы S. aureus и K. pneumoniae были разделены на чувствительные (МПК ≤ 8 мг/л) и устойчивые (МПК > 8 мг/л) к хлорамфениколу, и анализ был выполнен отдельно для каждой из групп. Значения ИБ для чувствительных и устойчивых к хлорамфениколу штаммов S. aureus и K. pneumoniae представлены в Таблице 3.

Показано, что для чувствительных к хлорамфениколу (МПК \leq 8 мг/л) штаммов S. aureus и K. pneumoniae добавление антибиотиков (хлорамфеникола, тиамфеникола, тиамфеникола глицината ацетилцистеината) значимо уменьшало ИБ. Для устойчивых к хлорамфениколу (МПК > 8 мг/л) штаммов S. aureus и K. pneumoniae эффект значимого снижения ИБ отмечался только в присутствии комбинации 8 мг/л хлорамфеникола и 5 мг/л NAC. Добавление тиамфеникола оказывало обратный эффект и увеличивало интенсивность биопленкообразования у ряда устойчивых штаммов S. aureus и K. pneumoniae (различия статистически значимы для штаммов S. aureus). Добавление NAC к тиамфениколу (тиамфеникола глицинат ацетилцистеинат, комбинация тиамфеникола с NAC) нивелировало этот эффект для устойчивых штаммов, интенсивность биопленкообразования была сопоставима с соответствующими контролями.

В отношении чувствительных к хлорамфениколу (МПК ≤ 8 мг/л) штаммов *S. aureus* отмечен эффект уменьшения биопленкообразования в присутствии 8 мг/л тиамфеникола. При добавлении NAC к тиамфениколу (тиамфеникола глицинат ацетилцистеинат, комбинация тиамфеникола с NAC) эффект проявлялся более интенсивно, различия незначимы ввиду небольшого размера группы.

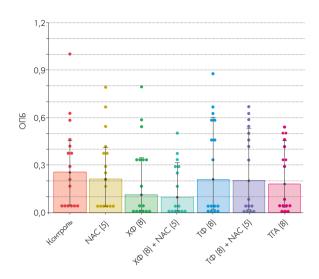


Рисунок 3. ОПБ *K. pneumoniae* (n = 16), обработанных антибиотиками, NAC и их комбинациями

NAC – N-ацетилцистеин; $X\Phi$ – хлорамфеникол; $T\Phi$ – тиамфеникол; TFA – тиамфеникола глицинат ацетилцистеинат.

В круглых скобках указана концентрация в мг/л.

Влияние N-ацетилцистеина и его комбинаций с тиамфениколом на выживаемость предварительно сформированных биопленок *S. pneumoniae*

Исследование выполнено в пяти повторах со штаммом *S. pneumoniae* 12624, который характеризовался максимальным значением ОПБ среди протестированных штаммов *S. pneumoniae* и имел МПК хлорамфеникола

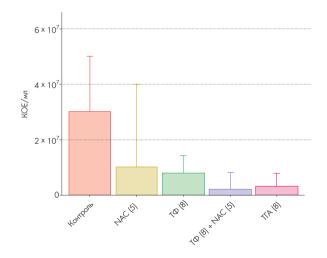


Рисунок 4. Влияние NAC, тиамфеникола и их комбинаций на выживаемость микробных клеток штамма S. pneumoniae 12624 в составе биопленки

NAC – N-ацетилцистеин; $T\Phi$ – тиамфеникол; $T\Gamma A$ – тиамфеникола глицинат ацетилцистеинат. В круглых скобках указана концентрация в мг/л.

АНТИМИКРОБНЫЕ ПРЕПАРАТЫ КМАХ · 2024 · Том 26 · №1

Таблица 2. Значения ОПБ для штаммов S. pneumoniae, S. aureus и К. pneumoniae, обработанных антибиотиками, NAC и их комбинациями

	Контроль	NAC (5 Mr/л)	ХФ (8 мг/л)	XΦ (8 мг/л) + NAC (5 мг/л)	TΦ (8 мг/л)	TΦ (8 мг/л) + NAC (5 мг/л)	TFA (8 Mr/л)
	1	2	က	4	5	9	7
S. pneumoniae	0,1804 [0,1625;0,2042]	0,1564 [0,1238;0,2061]	0,0334 [0,0117;0,0599]	0,0288 [0,0079;0,0477]	0,06655 [0,0622;0,0745]	0,04330 [0,0356;0,0572]	0,0563 [0,0481;0,0628]
р (тест Манна – Уитни)		$p_{(1-2)} = 0,1100$	p ₍₁₋₃₎ < 0,0001	p (1-4) < 0,0001 p(3-4) = 0,4617	p ₍₁₋₅₎ < 0,0001	p ₍₁₋₆₎ < 0,0001 p ₍₅₋₆₎ = 0,0005	$p_{(1-7)} < 0,0001$ $p_{(5-7)} = 0,0001$
S. aureus	0,0880 [0,0745;0,1265]	0,08600 [0,0620;0,1050]	0,01800 [0,0123;0,0858]	0,0170 [0,0093;0,0680]	0,0860 [0,0260;0,1178]	0,0380 [0,0225;0,0758]	0,0395 [0,0333;0,0790]
р (тест Манна – Уитни)		p ₍₁₋₂₎ =0,6621	p(1-3) =0,0029	p (1-4) < 0,0001 p(3-4) = 0,2909	p ₍₁₋₅₎ = 0,5328	p (1-6) = 0,0031 p(5-6) = 0,1930	$p_{(1-7)} = 0,0038$ $p_{(5-7)} = 0,1305$
K. pneumoniae	0,2555 [0,0485;0,4540]	0,2115 [0,0400;0,4128]	0,1135 [0,0113;0,3458]	0,0970 [0,0100;0,3148]	0,2080 [0,0180;0,5990]	0,2040 [0,0210;0,5335]	0,1835 [0,0346;0,4553]
р (тест Манна – Уитни)		$p_{(1-2)} = 0.5147$	p ₍₁₋₃₎ = 0,1188	$p_{(1-4)} = 0.0746$ $p_{(3-4)} = 0.5702$	p ₍₁₋₅₎ = 0,7442	$p_{(1-6)} = 0,7034$ $p_{(5-6)} = 0,8748$	$p_{(1.7)} = 0,4971$ $p_{(5.7)} = 0,7307$

Таблица 3. Значения ИБ для штаммов *S. aureus и К. pneumoniae*, чувствительных и устойчивых к хлорамфениколу

	Контроль	NAC (5 Mr/n)	ΧΦ (8 мг/л)	XΦ (8 мг/л) + NAC (5 мг/л)	TΦ (8 мг/л)	TΦ (8 мг/л) + NAC (5 мг/л)	TFA (8 Mr/л)
	1	2	3	4	5	9	7
S. aureus (ΜΠΚ < 8 мг/л, n = 10)	100	87,7 [81,6;108,7]	16,1 [9,825;31,05]	11,4 [9,675;21,03]	62,7 [26,43;81,23]	31,0 [20,53;42,2]	35,9 [23,3,46,23]
р (тест Манна – Уитни)			p ₍₂₋₃₎ < 0,0001	p ₍₂₋₄₎ < 0,0001	p ₍₂₋₅₎ = 0,0021	p ₍₂₋₆₎ < 0,0001 p ₍₅₋₆₎ = 0,1188	$p_{(2-7)} < 0,0001$ $p_{(5-7)} = 0,1486$
S. aureus (ΜΠΚ > 8 мг/л, n = 6)	100	92 [87,35;114]	92,85 [76,45;101,7]	71,95 [63,6;85,05]	134,3 [116,2;162,7]	100,2 [89,28;116,8]	91,9 [84,98;112]
р (тест Манна – Уитни)			p ₍₂₋₃₎ = 0,8182	p ₍₂₋₄₎ = 0,0087	p ₍₂₋₅₎ = 0,0087	$p_{(2-6)} = 0.5887$ $p_{(5-6)} = 0.0087$	$p_{(5-7)} = 0,7944$ $p_{(5-7)} = 0,0043$
K. pneumoniae (MΠK ≤ 8 мг/л, n = 6)	100	77,25 [65,85;92,1]	14,25 [4,575;23,08]	14,8 [3,975;25,85]	24,65 [13,83;43,3]	30,4 [14,68;52,78]	31,85 [23,45;54,58]
р (тест Манна – Уитни)			p _(2·3) = 0,0022	p ₍₂₋₄₎ = 0,0022	p ₍₂₋₅₎ = 0,0087	p ₍₂₋₆₎ = 0,0260 p ₍₅₋₆₎ = 0,6991	$p_{(2.7)} = 0,0260$ $p_{(5.7)} = 0,3939$
K. pneumoniae (МПК > 8 мг/л, n = 10)	100	91,8 [78,9;112,4]	80,2 [73;92,9]	74,85 [68,45;79,13]	117,9 [99,8;151,8]	112,1 [93,53;147,8]	103 [67,45;119,2]
р (тест Манна – Уитни)			p _(2.3) = 0,2176	p ₍₂₋₄₎ = 0,0089	$p_{(2.5)} = 0,1431$	$p_{(2-6)} = 0,1903$ $p_{(5-6)} = 0,7394$	$p_{(2.7)} = 0,5787$ $p_{(5.7)} = 0,1230$

КМАХ · 2024 · Том 26 · №1

0.25 мг/л, МПК тиамфеникола 0.25 мг/л, МПК тиамфеникола глицината 0.25 мг/л.

Результаты количественного определения жизнеспособных микробных клеток в составе предварительно сформированных биопленок после их 48-часовой инкубации в присутствии NAC, тиамфеникола и их комбинаций представлены на Рисунке 4. Количество жизнеспособных бактерий было наименьшим в случае обработки предварительно сформированных биопленок тиамфеникола глицинатом ацетилцистеинатом и комбинацией тиамфеникола с NAC, и значимо отличалось от количества жизнеспособных бактерий в составе необработанных биопленок (р < 0,05).

Обсуждение

В проведенном исследовании МПК тиамфеникола в отношении штаммов S. aureus и K. pneumoniae варьировала в широком диапазоне. Похожие результаты получены при анализе данных литературных источников, однако характеризуются меньшими значениями МПК $_{50}$ и МПК $_{90}$ для исследуемых штаммов S. aureus и К. pneumoniae [4, 16]. Стоит отметить, что среди штаммов S. pneumoniae не было выявлено изолятов, устойчивых к тиамфениколу, МПК не превышало 2 мг/л. В работе Marchese A. и соавт. тиамфеникол проявил высокую микробиологическую активность в отношении штаммов S. pneumoniae с множественной устойчивостью к антибиотикам, диапазон МПК составил 2-64 мг/л (МПК $_{50}$ – 4 мг/л и МПК $_{90}$ – 64 мг/л). При этом активность тиамфеникола in vitro была равна или превосходила таковую хлорамфеникола [16]. Albini E. и соавт. показали антибактериальную активность in vitro тиамфеникола глицината ацетилцистеината в отношении респираторных патогенов. Активность тиамфеникола превышала активность эритромицина в отношении H. influenzae и S. pneumoniae (диапазон МПК 1-32 мг/, МПК $_{50}$ – 2 мг/л и МПК $_{90}$ – 32 мг/л) [18].

Давно известен факт существования бактерий не только в виде отдельных микроорганизмов, но и в составе биопленок, где они приобретают новые свойства, в том числе и устойчивость к высоким концентрациям антибиотиков, которые могут в 10–1000 раз превышать таковые для планктонных форм. В связи с этим эффективность большинства режимов санации может оказаться недостаточной [19]. Комбинация антибиотиков с другими альтернативными методами лечения является многообещающей стратегией против бактериальных биопленок [20].

Многочисленные исследования in vitro показали, что NAC эффективен в ингибировании образования биопленок, разрушении уже сформированного экзополимерного матрикса, а также снижении жизнеспособности бактерий в их составе. Способность NAC препятствовать росту бактерий и формированию биопленок была впервые показана в отношении Staphylococcus epidermidis [21]. Исходя из литературных данных, NAC демонстрировал антибиопленочную

эффективность также в отношении широкого круга микроорганизмов, включая грамотрицательные и грамположительные бактерии, а также дрожжи [22, 23]. Выявлена способность NAC нарушать строение экзополимерного матрикса и, как следствие, способствовать разрушению биопленок [24, 25].

Проведенное исследование демонстрирует, что из входящих в спектр антибактериальной активности тиамфеникола микроорганизмов наибольшей способностью к биопленкообразованию обладают штаммы K. pneumoniae и S. aureus. Тиамфеникол способен стимулировать биопленкообразование у ряда устойчивых к нему штаммов S. aureus и K. pneumoniae, добавление к тиамфениколу NAC нивелировало данный эффект. Для биопленок S. pneumoniae, выращенных в присутствии комбинации тиамфеникола с NAC либо тиамфеникола глицината ацетилцистеината, полученные значения ОПБ были значимо ниже, чем для биопленок, выращенных в присутствии только тиамфеникола (р < 0,0001). Отмечено, что для чувствительных к хлорамфениколу (МПК ≤ 8 мг/л) штаммов S. aureus и K. pneumoniae добавление антибиотиков (хлорамфеникола, тиамфеникола, тиамфеникола глицината ацетилцистеината) значимо уменьшало индекс биопленкообразования, в то время как для устойчивых штаммов S. aureus и K. pneumoniae снижение интенсивности биопленкообразования отмечена только в присутствии комбинации хлорамфеникола и NAC.

К настоящему времени клинических исследований по применению NAC в терапии инфекций, связанных с формированием бактериальных биопленок, проведено немного, однако есть ряд доказательств того, что NAC отдельно либо в сочетании с антибиотиками может снижать риск обострений хронического бронхита, хронической обструктивной болезни легких и риносинусита. В большинстве опубликованных результатов исследований использовались пероральные или внутримышечные формы NAC [26].

Исследование Llamosi M. и соавт. демонстрирует синергидный эффект между пероральными цефалоспоринами и NAC для предотвращения адгезии пневмококков в нижних дыхательных путях и лечения пневмококковой пневмонии в мышиной модели [27]. В исследовании Macchi A. и соавт. показана высокая эффективность внутримышечного и ингаляционного введения тиамфеникола глицината ацетилцистеината в лечении пациентов с рецидивирующими инфекциями верхних дыхательных путей. Из 24 пациентов с подтвержденным при помощи сканирующей электронной микроскопии наличием биопленок S. aureus, S. pyogenes, S. pneumoniae и H. influenzae в биоптатах слизистых, терапия тиамфеникола глицинатом ацетилцистеинатом позволила достичь клинического выздоровления и микробиологической эрадикации у 21 (87,5%) пациентов [28].

При изучении влияния NAC и его комбинаций с тиамфениколом на выживаемость предварительно сформированных биопленок S. pneumoniae нами было установлено, что количество жизнеспособных бактерий было АНТИМИКРОБНЫЕ ПРЕПАРАТЫ KMAX · 2024 · Том 26 · №1

наименьшим в случае обработки биопленок тиамфеникола глицинатом ацетилцистеинатом либо комбинацией тиамфеникола с NAC и значимо отличалось от необработанных контролей, предполагая целесообразность использования подобных стратегий *in vivo*.

Заключение

Оценено влияние антибиотиков (хлорамфеникола, тиамфеникола) и комбинаций антибиотиков с NAC на интенсивность биопленкообразования штаммов *S. pneumoniae*, *S. aureus* и *K. pneumoniae*. Значения МПК тиамфеникола и тиамфеникола глицината ацетилцистеината (в пересчете на тиамфеникол) совпадали для 87,5% штаммов. Показана высокая микробиологическая ак-

тивность тиамфеникола и тиамфеникола глицината ацетилцистеината в отношении штаммов *S. pneumoniae*. Для штаммов *S. pneumoniae* обработка хлорамфениколом, тиамфениколом, тиамфеникола глицинатом ацетилцистеинатом, комбинацией хлорамфеникола и тиамфеникола с NAC приводило к значимому снижению значений ОПБ. Добавление тиамфеникола увеличивало интенсивность биопленкообразования у ряда устойчивых к нему штаммов *S. aureus* и *К. pneumoniae*, однако обработка биопленок производным тиамфеникола – тиамфеникола глицинатом ацетилцистеинатом нивелировало данный эффект, что указывает на потенциал антибактериальной активности данного препарата в отношении штаммов *S. pneumoniae* и образуемых ими биопленок и его применения в клинической практике.

Литература

- Lombardi A., Drago L., De Vecchi E., Mombelli B., Gismondo M. Antimicrobial activity of thiamphenicol-glycinate-acetylcysteinate and other drugs against *Chlamydia pneumoniae*. Arzneimittelforschung. 2001;51(3):264-267. DOI: 10.1055/s-0031-1300034
- 2. O'Grady F, Pearson N., Dennis C. Thiamphenicol and chloramphenicol: an *in vitro* comparison with particular reference to bactericidal activity. Chemotherapy. 1980;26(2):116-120. DOI: 10.1159/000237892
- 3. Ivanchik N.V., Sukhorukova M.V., Chagaryan A.N., Trushin I.V., Dekhnich A.V., Kozlov R.S. In vitro activity of thiamphenicol against Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes clinical isolates. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia. 2021;23(1):92-99. Russian. (Иванчик Н.В., Сухорукова М.В., Чагарян А.Н., Трушин И.В., Дехнич А.В., Козлов Р.С. In vitro активность тиамфеникола в отношении клинических изолятов Haemophilus influenzae, Streptococcus pneumoniae и Streptococcus pyogenes. Клиническая микробиология и антимикробная химиотерапия. 2021;23(1):92-99.) DOI: 10.36488/cmac.2021.1.92-99
- Drago L., De Vecchi E., Fassina M., Mombelli B., Tocalli L., Gismondo M. Comparative in vitro activity of thiamphenicol-glycinate and thiamphenicol-glycinate-acetylcysteinate and other antimicrobials against respiratory pathogens. Arzneimittelforschung. 2001;51(4):315-324. DOI: 10.1055/s-0031-1300044
- 5. Belevskiy A., Knyazheskaya N. Thiamphenicol glycinate acetylcysteinate for the treatment of acute and chronic pulmonary diseases. Practical pulmonology. 2017;3:122-126. Russian. (Белевский А.С, Княжеская Н.П. Тиамфеникола глицинат ацетилцистеинат: некоторые аспекты применения при острых и хронических легочных заболеваниях. Практическая пульмонология. 2017;3:122-126.)
- 6. Serra A., Schito G., Nicoletti G., Fadda G. A therapeutic

- approach in the treatment of infections of the upper airways: thiamphenicol glycinate acetylcysteinate in sequential treatment (systemic-inhalatory route). Int J Immunopathol Pharmacol. 2007;20(3):607-617. DOI: 10.1177/039463200702000319
- Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;136:1-51. DOI: 10.1111/ apm.12099
- Kostakioti M., Hadjifrangiskou M., Hultgren S. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. DOI: 10.1101/ cshperspect.a010306
- Lebeaux D., Ghigo J., Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-543. DOI: 10.1128/MMBR.00013-14
- Akbarian M., Chen S., Kianpour M., Farjadian F., Tayebi L., Uversky V. A review on biofilms and the currently available antibiofilm approaches: matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol. 2022;219:1163-1179. DOI: 10.1016/j.ijbiomac.2022.08.192
- Amankwah S., Abdella K., Kassa T. Bacterial biofilm destruction: a focused review on the recent use of phagebased strategies with other antibiofilm agents. Nanotechnol Sci Appl. 2021;14:161-177. DOI: 10.2147/NSA. S325594
- Zhang L., Bera H., Wang H., Wang J., Guo Y., Shi C., et al. Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm. 2022;616:121507. DOI: 10.1016/j.ijpharm.2022.121507
- Dieltjens L., Appermans K., Lissens M., Lories B., Kim W., Van der Eycken E., et al. Inhibiting bacterial cooperation is

Карпова Е.В. и соавт.

КМАХ · 2024 · Том 26 · №1

an evolutionarily robust anti-biofilm strategy. Nat Commun. 2020;11:107. DOI: 10.1038/s41467-019-13660-x

- 14. ISO 20776-1:2006 «Clinical laboratory testing and in vitro diagnostic test systems Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices» Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
- Stepanovic S., Vukovic D., Hola V., Di Bonaventura G., Djukic S., Cirković I., et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-899. DOI: 10.1111/j.1600-0463.2007
- Rebrova O.Yu. Statistical analysis of medical data. Using the Statistica software package. M.: Media Sphera, 2002. 305 p. Russian. (Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica. M.: Медиа Сфера, 2002. 305 с.).
- Marchese A., Debbia E., Tonoli E., Gualco L., Schito A. In vitro activity of thiamphenicol against multiresistant Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in Italy. J Chemother. 2002;14:554-561. DOI: 10.1179/joc.2002.14.6.554
- Albini E., Belluco G., Berton M., Schioppacassi G., Ungheri D. *In vitro* antibacterial activity of thiamphenicol glycinate acetylcysteinate against respiratory pathogens. Arzneimittelforschung. 1999;49(6):533-537. DOI: 10.1055/s-0031-1300456
- Ciofu O., Moser C., Jensen P., Hoiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022;20(10):621-635. DOI: 10.1038/s41579-022-00682-4
- Domenech M., Sempere J., de Miguel S., Yuste J. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front Immunol. 2018;9:2700. DOI: 10.3389/fimmu.2018.02700
- 21. Pérez-Giraldo C., Rodríguez-Benito A., Morán F.,

- Hurtado C., Blanco M., Gómez-García A. Influence of N-acetylcysteine on the formation of biofilm by *Staphylococcus epidermidis*. J Antimicrob Chemother. 1997;39:643-646. DOI 10.1093/jac/39.5.643
- Domenech M., Garcia E. N-Acetyl-L-cysteine and cysteamine as new strategies against mixed biofilms of nonencapsulated Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Antimicrob Agents Chemother. 2017;61:e01992-16. DOI: 10.1128/AAC.01992-16
- Zhao T., Liu Y. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 2010;10:140. DOI: 10.1186/1471-2180-10-140
- Drago L., De Vecchi E., Mattina R., Romanò C. Activity of N-acetyl-L-cysteine against biofilm of *Staphylococcus* aureus and *Pseudomonas aeruginosa* on orthopedic prosthetic materials. Int J Artif Organs. 2013;36:39-46. DOI: 10.5301/ijao.5000135
- Domenech M., Pedrero-Vega E., Prieto A., Garcia E. Evidence of the presence of nucleic acids and beta-glucan in the matrix of non-typeable *Haemophilus influenzae in* vitro biofilms. Sci Rep. 2016;6:36424. DOI: 10.1038/ srep36424
- Blasi F., Page C., Rossolini G., Pallecchi L., Matera M., Rogliani P., Cazzola M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016;117:190-197. DOI: 10.1016/j.rmed.2016.06.015
- Llamosí M., Sempere J., Coronel P., Gimeno M., Yuste J., Domenech M. Combination of cefditoren and n-acetyll-cysteine shows a synergistic effect against multidrugresistant *Streptococcus pneumoniae* biofilms. Microbiol Spectr. 2022;10(6):e0341522. DOI: 10.1128/ spectrum.03415-22
- 28. Macchi A., Ardito F., Marchese A., Schito G.C., Fadda G. Efficacy of N-acetyl-cysteine in combination with thiamphenicol in sequential (intramuscular/aerosol) therapy of upper respiratory tract infections even when sustained by bacterial biofilms. J Chemother. 2006;18(5):507-513. DOI: 10.1179/joc.2006.18.5.507