В большинстве случаев, течение заболевания осложнилось прогрессированием полиорганной недостаточности (4 (15,4 %) человека), наслоением пневмонии (10 (38,5 %) человек), развитием ДВС — синдрома (6 (23 %) человек), отека мозга (5 (19,2 %) человек).

Непосредственной причиной смерти явились: полиорганная недостаточность — 10 (38,5 %) человек, отек мозга — 9 (34,6 %) человек, легочносердечная недостаточность — 5 (19,2 %) человек, септический шок — 1 (3,8 %) человек.

Выводы

1. Большинство детей умерло в возрасте до полутора месяцев. Среди причин детской смертности преобладала внутриутробная инфекция. В результате низких диагностических возможностей этиологическая структура установлена только у 4 детей.

Среди больных преобладали лица женского пола, и жители сельской местности.

- 2. Течение беременности в большинстве случаев осложнялось обострением хронических инфекций, угрозой прерывания, ОРИ.
- 3. Наиболее частыми синдромами при поступлении в стационар являлись проявления дыхательной недостаточности, нарушения кровообращения, неврологическая симптоматика, повышение температуры тела.
- 4. У большинства детей отмечались патологические изменения со стороны внутренних органов по данным дополнительных методов исследования: по результатам УЗИ головного мозга превалировала вентрикуломегалия, эхокардиографическим результатам врожденные пороки сердца, УЗИ внутренних органов гепатомегалия, диффузных изменений паренхимы почек.
- 5. Причиной смерти у большинства детей являлись: полиорганная недостаточность, отек мозга, легочно-сердечная недостаточность, септический шок. Отмечалось полное совпадение патолого-анотомического и заключительного клинического диагнозов.

ЛИТЕРАТУРА

- 1. *Терехович, Т. И.* Оценка показателей здоровья населения, деятельности и дефектов в работе организаций здравоохранения Республики Беларусь / Т. И. Терехович, В. В. Антилевский // Достижения медицинской науки Беларуси. 2008. Вып. XIII. С. 108–109.
- 2. Основные показатели здравоохранения Гомельской области за 2007 год: офиц. стат. сборник. Гомель, 2008. 153 с.

УДК:612.118.221.2(476)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ГРУПП КРОВИ У ВЫБОРОЧНОЙ ГРУППЫ ЖИТЕЛЕЙ ГОМЕЛЬСКОЙ ОБЛАСТИ

*Игнатенко В. А., Евтухова Л. А., Ковальчук А. А.

Учреждение образования «Гомельский государственный университет им. Ф. Скорины», *Учреждение образования «Гомельский государственный медицинский университет», г. Гомель, Республика Беларусь

Введение

Кровь — это разновидность соединительной ткани с жидким межклеточным веществом плазмой и взвешенными в ней форменными элементами: эритроцитами, лейкоцитами и кровяными пластинками-тромбоцитами. Вместе с тканевой жидкостью и лимфой она является важнейшим компонентом внутренней среды организма человека, а также необходимым условием его жизнедеятельности.

Принадлежность индивидуума к той или иной группе крови имеет очень большое значение в медицине, генетике, антропологии и других смежных науках [1].

Сейчас проводятся обширные исследования для решения актуальной проблемы взаимодействия человека и биосферы, популяционно-генетической изменчивости чело-

века в зависимости от экологических и исторических факторов. Для успешного решения вопросов, связанных с разнообразием генетического полиморфизма человеческих популяций нужна новая информация о генетической структуре как коренного населения, так и современных урбанизированных популяций.

Анализ городских популяций представляет особую ценность в связи с неоднородной национальной и социальной структурой, обусловленной резким увеличением демографических ситуаций и увеличением миграционных процессов, что свидетельствует об актуальности данной работы.

Так как система ABO в онтогенезе не подвержена воздействию факторов среды, то ее использование при изучении эволюционных изменений и оказывается более предпочтительным по сравнению с морфологическими признаками.

Цель работы: изучить группы крови системы ABO и отразить характерные особенности распределения групп крови и их генотипы у жителей PБ, сравнить полученные результаты с распределением групп крови системы ABO среди разных народов на примере выборочной группы жителей города Мозыря Гомельской области, а также выявить закономерности распространения резус-фактора.

Практическое значение: полученные данные можно использовать для изучения миграционных процессов групп крови, которые оказывают влияние на формирование генотипического полиморфизма в человеческих популяциях.

Методы исследования: исследования проводились в крупном городе Гомельской области Мозыре с более чем стотысячным населением. Для проведения исследования были использованы данные, полученные методом случайного опроса и анкетирования жителей города. В опросе приняло участие 446 человека, которые составили выборочную совокупность исследования. Были составлены сводные таблицы по частоте встречаемости групп крови системы AB0 и резус-фактора у исследуемых людей. Для выполнения расчетов использовались математические методы, описанные Ли, Ч в книге «Введение в популяционную генетику» [2].

Результаты и обсуждение

Результаты анкетирования представлены в таблице 1 столбик 2.

Поскольку групп крови системы ABO четыре, а количество возможных генотипов, их определяющих, — шесть, то в генетически нейтральной ситуации, когда нет давления отбора, случайных всплесков в случае свободного скрещивания, ABO генотипы должны быть распределены достаточно равномерно и во всем диапазоне — от 0 до 100 %. Практически, мы имеем результаты, которые представлены в таблице 1.

Для получения этих результатов мы воспользовались математическими методами, представленными в книге Ли, Ч. «Введение в популяционную генетику» [2], которые опираются на теорию Ф. Бернштейна (1930), объясняющую механизм наследования групп крови ABO за счет существования трех аллелей: \mathbf{A} , \mathbf{a}^* и \mathbf{a} , которые встречаются с частотами \mathbf{p} ; и \mathbf{r} соответственно, при этом \mathbf{p} + \mathbf{q} + \mathbf{r} = $\mathbf{1}$. Аллель \mathbf{A} , ответственный за синтез антигена \mathbf{A} , доминирует над аллелем \mathbf{a} (не способен к образованию какого-либо антигена); аллель \mathbf{a}^* , вырабатывающий антиген \mathbf{B} , также доминирует над \mathbf{a} . Аллели \mathbf{A} и \mathbf{a}^* не доминируют друг над другом и вырабатывают антигены независимо один от другого так, что гетерозиготные индивидуумы $\mathbf{A}\mathbf{a}^*$ обладают антигенами обоих типов, поэтому в популяциях человека четыре различных фенотипа и шесть генотипов (таблица 1 столбцы $\mathbf{1}$, $\mathbf{3}$).

Частоты генов соответствующих аллелей определяли по формулам по Φ . Бернштейну:

$$r^2=rac{c}{G}$$
 — частота встречаемости группы крови O(I) ;
$$(p+r)^2=rac{a}{G}+rac{c}{G}\,, \eqno(1)$$

где $\frac{a}{G}$ — частота встречаемости группы крови A(II); а $\frac{c}{G}$ — частота встречаемости группы крови O(I).

$$(q+r)^2 = \frac{b}{G} + \frac{c}{G},\tag{2}$$

где $\frac{b}{G}$ — частота встречаемости группы крови B(III); а $\frac{c}{G}$ — частота встречаемости группы крови O(I).

Отсюда найдем частоты генов:

$$r = \sqrt{\frac{c}{G}}$$
; $p = 1 - \sqrt{\frac{a}{G} + \frac{c}{G}}$; $q = 1 - \sqrt{\frac{b}{G} + \frac{c}{G}}$; (3)

при условии r+p+q=1, а реально $r+p+q\neq 1$; тогда, учитывая дисперсию D, можно записать r+p+q+D=1, откуда найдем D и определим скорректированные частоты генов:

$$\hat{r} = (1 + \frac{1}{2}D)(r + \frac{1}{2}D); \qquad p = (1 + \frac{1}{2}D)(1 - \sqrt{\frac{a}{G} + \frac{c}{G}}); \qquad \hat{q} = (1 + \frac{1}{2}D)(1 - \sqrt{\frac{b}{G} + \frac{c}{G}}). \tag{4}$$

Полученные по формулам результаты занесены в таблицу 1.

Из данных таблицы 1, следует, что в исследуемой группе наибольшей частотой встречаемости обладают O(I) и A(II) группы крови, а наименьшей — B(III) группа крови и совсем мало исследуемых с AB(IV) группой крови. По частоте встречаемости групп крови мы совпадаем с частотой встречаемости групп крови северо-западных районов России (таблица 1, столбцы 7 и 8). При рассмотрении распределения системы крови ABO по континенту Евразии наблюдается особенность, что чем дальше на восток, тем больший процент крови III и IV групп.

Таблица 1 — Частоты групп крови 446 жителей Мозыря и соответствующие частоты генов системы ABO трех аллелей

Группы	Наблюдаемая		Генотип	Частота генов		Оценка	Скорректи-	Частота	Северо-
крови	численность			системы АВО		частот	рованная	встречае-	запад России.
				трех аллелей		генов по	частота	мости	Частота
				А ; a *; a и соответ-		Ф. Берн-	генов	групп	встречаемости
				ствующие им		штейну [2]		ABO	групп АВО [3]
				частоты p;q; r					
1	2		3	4		5	6	7	8
AB(IV)	h	28	Aa*	2pq	0,0692			0,063	0,05-0,10
B(III)	b	87	a*a*, aa	q ² +2qr	0,1872			0,195	0,15-0,20
A(II)	a	167	AA, Aa	p ² +2pr	0,3653			0,368	0,35-0,40
O(I)	c	164	aa	\mathbf{r}^2	0,3677	r = 0,6064	0,6107	0,374	0,35
A(II)+O(I)	a+c	331		p^2	0,0624	p = 0.2498	0,2502		
B(III)+O(I)	b+c	251		q^2	0,0192	q = 0.1385	0,1388		
G		446		1	1,071	0,9947	0,9997	1	1

Данные по распределению резус-фактора у жителей исследуемой группы представлены в таблице 2.

Таблица 2 – Распространение резус-фактора у жителей города Мозыря

Резус-фактор	Наблюдаемая численность	Частота встречаемости данного резус-фактора	
Rh+	384	0,861	
Rh-	62	0,139	
Всего	446	1	

В таблицу 3 мы поместили данные по распределению системы крови АВО исследуемой группы людей.

Таблица 3 — Распределение групп крови среди разных народов в % (по В. П. Эфроисо-

ну с добавлением исследуемых результатов из *таблицы 1)

Народ	O(I)	A(II)	B(III)	AB(IV)
Англичане	43,5	44,7	8,6	3,2
Голландцы	46,3	42,1	8,5	3,1
Венгры	29,9	45,2	17,0	7,9
*Мозыряне, РБ	37,4	36,8	19,5	6,3
*Северо-запад районов России	35	35–40	15–20	5–10
Русские	32,9	35,8	23,2	8,1
Китайцы	45,5	22,6	25,0	6,9
Индийцы	30,2	24,5	37,2	8,1
Японцы	31,1	36,7	22,7	9,5

Таким образом, система АВО групп крови является для нас определяющей при анализе генетической структуры белорусского населения [4].

Генетическая структура городского населения определялась на основе оценки частоты встречаемости генов крови AB0 (таблица 1). Следует отметить, что наиболее точную характеристику генетической структуры дают не частоты встречаемости носителей групп крови, а частоты аллелей ${\bf A}, {\bf a}^*$ и ${\bf a}$, кодирующие эти группы.

По литературным данным, распределение частоты аллеля \mathbf{A} в популяциях коренного населения Белоруссии составляет 50–55 %, аллеля \mathbf{a}^* — 20–30 % и аллеля \mathbf{a} — 10–15 % [4].

По результатам вычислений частота аллеля A, a^* и a в городе Мозыре соответствует литературным данным (таблица 1).

Как видно из полученных результатов, в исследуемой группе наибольшее количество человек с положительным резус-фактором — 384 человека или 86 % от общего количества исследуемого населения и 13,9 % человек с отрицательным резус-фактором (таблица 2), что соответствует литературным источникам.

Заключение

Полученные результаты отвергают возможность равномерного распределения по планете ABO генотипа при свободном скрещивании, что подтверждается исследованием выборочной совокупности и удовлетворяет литературным данным.

Знание групповой принадлежности и соответствующего генотипа — необходимое условие безопасного переливания крови.

ЛИТЕРАТУРА

- 1. *Жибурт, Е. Б.* Трансфузиология: учебник / Е. Б.Жибурт. СПб.: Питер, 2002. 736 с.
- 2. Ли, Ч. Введение в популяционную генетику / Ч. Ли; пер. с англ. М.: Мир, 1978. 560 с.
- 3. *Микулич*, *А. И.* Наша генетическая память: современные аспекты антропогенетики / А. И. Микулич. Мн.: Наука и техника, 1987. 72 с.
- 4. *Солодков. А. С.* Физиология человека. Общая, спортивная, возрастная: учебник / А. С. Солодков, Е. Б. Сологуб. 2-е изд., испр. и доп. М.: Олимпия Пресс, 2005. 528 с.

УДК 617.586:616.379-008.64-08

НОВЫЕ ПОДХОДЫ К ЛЕЧЕНИЮ СИНДРОМА ДИАБЕТИЧЕСКОЙ СТОПЫ Игнатович И. Н., Кондратенко Г. Г., Леонович С. И., Корниевич С. Н., Таганович Д. А., Сергеев Г. А., Храпов И. М.

Учреждение образования «Белорусский государственный медицинский университет» г. Минск, Республика Беларусь

Введение

Спасение конечности у больных с хронической критической ишемией при синдроме диабетической стопы без восстановления кровотока бесперспективно.