УДК 611.08:539.412.1:539.52 (045)

Динамическое испытание деформационно-прочностных свойств миокарда 1 Мальцева Н. Г., 2 Туманов Э. В., 3 Хиженок В. Ф., 3 Шилько С. В.

¹Учреждение образования «Гомельский государственный медицинский университет»,

²Учреждение образования «Гомельский инженерный институт» МЧС Республики Беларусь, г. Гомель, Республика Беларусь

³Государственное научное учреждение «Институт механики металлополимерных систем им. В. А. Белого» Национальной академии наук Беларуси, г. Гомель, Республика Беларусь

Введение

Исследование биомеханических свойств ткани сердца, модулирующих механическое поведение миокарда, являются одной из актуальных задач современной медицины и смежных с ней отраслей научного знания. Данные, полученные при изучении вязкости, упругости миокарда используются в инженерных расчетах поведения сердца при различных патологических состояниях, используются для разработки способов прогнозирования, оценки развития и диагностики различных видов Остновонное жувений (4, 5). механических свойствах миокарда, в том числе его деформационно-прочностных характеристиках, в настоящее время получены в результате одноосных испытаний, проведенных на препаратах изолированного миокарда (трабекулы или папиллярные мышцы), а также полученных при исследовании интраоперационного и биопсийного материала. В проведенных исследований изучены вязкоупругостные свойства миокарда, которые характеризуют его пассивные механические свойства в невозбужденном состоянии [3]. В некоторых случаях пассивные свойства мышцы называют также диастолическими, поскольку они существенно определяют часть фазы сердечного цикла — диастолу [2].

Хотя одноосные исследования дают существенный вклад в понимание механики сердца, эти результаты трудно экстраполировать на целое сердце.

Изометрический режим в одномерном случае не является таковым в трехмерном, так как боковые стороны ткани миокарда в исследованиях остаются нефиксированными и свободно деформируются. Помимо этого, следует учитывать, что в цельном сердце ткань подвергается пространственному нагружению, для анализа которого данные, полученные в одноосных испытаниях на полосках мышечной ткани, являются недостаточными.

Полученные в проводившихся исследованиях данные по механическим свойствам пассивного миокарда человека важны для клиники, однако, в настоящее время их явно недостаточно, так как они определяют исключительно диастолические свойства сердечной мышцы, в то время как механические свойства сердечной мышцы во многом зависят от механической активности миокарда, обусловленной в том числе и фазой сердечного цикла [2]. Для выявления природы поведения сердечной мышцы важно знать ее биомеханические параметры, влияющие на активное механическое поведение миокарда в различные фазы сердечного цикла, в том числе в тех его важных составляющих, как систола и диасметь исследований: изучение деформационно-прочностных свойств миокарда на примере динамического механического определения модуля упругости и твердости цельного сердца в пассивном и активном состоянии.

Материалы и методы

В эксперименте использовали изолированные сердца 20 белых беспородных крыс обоих полов 5–7 месячного возраста с массой тела 250–300 г. В работе соблюдались требования Хельсинской Декларации по гуманному обращению с животными.

Крысы были разделены на две группы, по 10 в каждой, содержавших равное количество мужских и женских особей. У всех животных под ингаляционным эфирным наркозом широким чрездиафрагмальным билатеральным доступом вскрывалась грудная клетка и быстро извлекалось сердце.

В первой группе моделировалась остановка сердца в фазу диастолы. Для этого сердца животных сразу же после извлечения помещались в камеру, где осуществлялась их перфузия модифицированным солевым раствором Хенкса, в котором отсутствовал $CaCl_2$ и было добавлено 0.5 мМ ЭДТА.

Во второй группе моделировалась остановка сердца в фазу систолы. Сердца помещались в солевой раствор Хенкса, в котором концентрация CaCl2 составила 2,0 мМ, был добавлен 1,0 мл 0,05 % раствора строфантина на 100 мл исходного раствора.

Во всех случаях динамические испытания деформационно-прочностных свойств миокарда проводились после полного окончания сердечных сокращений.

На каждом сердце осуществляли не менее 10 измерений механических свойств (твердость и упругость) передней поверхности левого желудочка (ППЛЖ), передней поверхности правого желудочка (ПППЖ), задней поверхности левого желудочка (ЗПЛЖ) и задней поверхности правого желудочка (ЗППЖ).

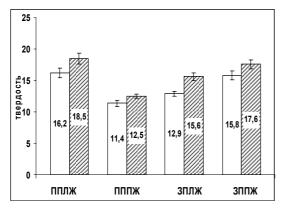
В исследовании снимались усредненные (огрубленные) напряжения и деформации миокарда и изучались функциональные связи между ними на основе эмпирически установленных (феноменологических) закономерностей. Подобное количественное описание поведения миокарда базировалось на достаточно широко применяемой в механике миокарда теории вязкоупругосги [1].

Динамические испытания сердечной мышцы проводились с использованием измерителя вязкоупругих свойств «Импульс-1Р» производства ГНУ «Институт прикладной физики НАН Беларуси» (Республика Беларусь), предназначенного для диагностики и сравнительного анализа физико-механических свойств эластомеров и полимеририхических вистем и приборе «Импульс-1Р» реализовывалось падение на поверхность миокарда исследуемого материала стального сферического индентора массой m = 4,4 г и радиусом R = 1,25 мм с начальной скоростью v = 0,95 м/с.

В результате идентификации используемой математической модели осуществлялось определение вязкоупругих параметров материала. Полученные результаты обработаны при помощи пакета программ «STATISTICA 6.0» и Microsoft Excel 2000 с использованием непараметрических методов.

Результаты и обсуждение

Активность сердечной мышцы, а также ее вязкоупругостные свойства реализуются на уровне структуры кардиомиоцитов, и обуславливаются комплексом биомеханических процессов, характеризующихся наличием большого ряда обратных связей. Так, в частности, механические условия сокращения во многом определяются способностью кардиомиоцитов к активному транспорту ионов кальция.


Перфузия сердца в бескальциевом растворе с добавлением ЭДТА приводит к постепенной элиминации свободного кальция из межклеточной жидкости, что в конечном итоге, вызывает остановку сердца в фазу диастолы без развития мышечного ригора и контрактуры. Физико-механические показатели миокарда животных 1-й группы, чьи сердца были помещены в раствор без кальция, характеризуют пассивное (диастолическое) состояние сердечной мышцы.

Индуцированное нахождение изолированного сердца в специальном сбалансированном растворе с повышенной концентрацией кальция и добавлением строфантина, перемещение актин-миозиновых комплексов в положение генерации силы приводит к остановке сердечной деятельности в фазе систолы. Данные условия постановки опыта

позволили провести динамические исследования механических свойств сердца в его активном (систолическом) состоянии — 2-я группа животных.

В ходе проведенного эксперимента были получены результаты, представленные на рисунках 1 и 2.

Анализ полученных результатов выявил, что исследуемые показатели имели достоверные отличия в разные фазы сердечного цикла. Твердость ППЛЖ во время систолы была на 14 % выше, чем во время диастолы. Твердость ЗПЛЖ в активном состоянии оказалась на 21 % больше, чем в пассивном.

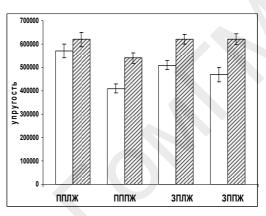


Рисунок 1 — Твердость миокарда

Рисунок 2 — Упругость миокарда

светлые столбики — 1-я группа, заштрихованные — 2-я группа; различия в сравнении с 1-й группой статистически значимы (p<0,05)

Аналогичные показатели для правого желудочка в сравнении с левым были несколько ниже, но так же характеризовались высокими значениями, обуславливающими систолическое состояние. Твердость ПППЖ в активной фазе на 9 % превосходила такой же показатель пассивной фазы, а твердость ЗППЖ на 11 %.

Показатель упругости также во всех случаях был выше у животных 2-й группы, на чьих сердцах моделировали активное (систолическое) состояние. В ППЛЖ на 9%, в ЗПЛЖ на 21 %, а в ПППЖ и в ЗППЖ упругость была на 31 % выше, чем в диастолическом состоянии.

Следует отметить, что измеряемые показатели не имели половой зависимости (статистически значимые различия не выявлены (p> 0,05)).

Выводы

Проведенные исследования позволили определить физико-механические свойства миокарда и выявить их различия в разные фазы сердечного цикла и в разных местах локализации. Более высокими показатели упругости и твердости мышечной ткани сердца оказались в активном состоянии (в фазу систолы). Это позволяет предположить различную прочность, а, соответственно, и различную устойчивость миокарда к механическим воздействиям в разные периоды сердечного цикла.

Полученные данные могут использоваться в различных направлениях теоретической и экспериментальной кардиологии, том числе и для создания математической модели сердца.

ЛИТЕРАТУРА

- 1. Биомеханика сердечной мышцы / В. Я. Изаков [и др.]. М.: Наука, 1981. 326 с.
- 2. Введение в биомеханику пассивного миокарда / В. Я. Изаков [и др.] М.: Наука, 2000. 208 с.
- 3. *Hunter, P. J.* Modelling the mechanical properties of cardiac muscle / P. L. Hunter, A. D. McCulloch // Prog Biophys Mol Biol. 1998. Vol. 69, № 2–3. P. 289-331.
- 4. Simulation analysis of mechanical properties of the canine heart with bundle branch block based on a 3-D electromechanical model / L. Xia [et al.] // Computers in Cardiology. 2007; № 34. P. 673–676.
- 5. *Usyk*, *T. P.* Forward modeling of ventricular tlectromech. interactions: normal and failing hearts: proceed. of the 26th annual intern. conf. of the IEEE EMBS. / T. P. Usyk. 2004. P. 3563–3564.