Между концентрацией гамма-интерферона и преждевременным разрывом амниотических мембран выявлена обратная средняя связь, rs = -0.4; p = 0.04.

Заключение

Нами установлена ассоциация между выявлением герпесвирусных инфекций и осложнениями беременности и родов.

ЛИТЕРАТУРА

- 1. Сенчук, А. Я. Перинатальные инфекции: руководство для врачей / А. Я. Сенчук, З. М. Дубоссарская. М., МИА, 2005 С. 106–146.
- 2. Современные представления о внутриутробной инфекции / О. В. Макаров, И. В. Бахарева, А. Н. Таранец // Акушерство и гинекология. 2004. № 1. С. 10–12.
- 3. Inflammatory processes in preterm and term parturition / I. Christiaens [et al.] // Journal of Reproductive Immunology. 2008. Vol. 79, № 9. P. 50–57.

УДК 618.36:616-097

РОЛЬ ФАКТОРОВ ИММУННОЙ ЗАЩИТЫ ПРИ ПЛАЦЕНТИТЕ

Корбут И. А., Барановская Е. И.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Для всех антенатальных ВУИ характерно поражение плаценты [1, 4], что приводит к плацентарной недостаточности, гипоксии плода, задержке внутриутробного развития, недонашиванию, антенатальной гибели плода и рождению ребенка в состоянии асфикции. Плацента является иммунным органом, который экспрессирует интерлейкины, продуцируемые Т-хелперами II типа, а также обладает способностью к двустороннему переносу интерлейкина-1β (IL-1β) [3, 4]. В 80 % последов при их инфекционном поражении обнаружены альфа-интерфероны (α -IF) и гамма-интерфероны (γ -IF) [1, 2]. Иммуннорегуляторные молекулы (IL-1 β , рецепторный антагонист IL-1 β (RA-IL-1 β), α -IF и γ -IF) инипиируют и регулируют воспалительные иммунные процессы, оказывают противовирусный эффект. Лактоферрин — гликопротеин, обладающий антиинфекционными свойствами, его концентрация при воспалении повышается. Макрофаги хориона и децидуальной оболочки активируются микроорганизмами или их метаболитами [4]. Это приводит к секреции широкого спектра биологически активных молекул в полость амниона, что обусловливает многие биохимические, физиологические и иммунологические изменения в организме плода, включая стимуляцию синтеза ряда белков острой фазы, а также тканевые повреждения [2, 3]. Через пограничный слой мать-плацента-под могут в большом количестве передаваться цитокины и факторы роста.

Цель

Исследовать взаимосвязь уровня иммунных молекул и воспалительных изменений последа.

Методы

Родильницы с повышенным перинатальным риском разделены на группы A (23 женщин с воспалительными изменениями последа) и Б (22 человек без плацентита). Восходящий тип инфицирования плаценты был выявлен у 8 (34,8 \pm 10,2 %) пациенток, признаки гематогенного — у 13 (56,5 \pm 10,6 %), в 2 (8,7 \pm 6,0 %) случаях имел место смешанный путь. Перинатальный риск в подгруппе A был 12 (10; 16), а в подгруппе Б — 13 (11; 16). Определение концентрации лактоферрина, α -IF, γ -IF, интерлейкина-1- β , RA-IL-1 β методом твердофазного иммуноферментного анализа (диагностические тест-системы производства ЗАО «Вектор-Бест», Новосибирск). Статистический анализ: Т-критерий Манна-Уитни с

поправкой Йейтса, вычисление медианы, 25-го и 75-го процентиля, критерия ранговой корреляции Спирмена, отношения правдоподобия (LR) (пакет прикладных программ «Statistica» 6.0).

Результаты и обсуждение

Концентрация лактоферрина в биологических жидкостях пациенток представлена в таблице 1.

Таблица 1 — Концентрация лактоферрина (нг/мл) в биологических жидкостях женщин группы высокого перинатального риска, Me (25; 75 %).

Субстрат	Группа А	Группа Б
Сыворотка материнской крови	500,0 (314,1;681,0) n = 23	278,8 (180,6; 603,9) n = 22
Сыворотка пуповинной крови	427,7 (263,3;685,3) n = 13	242,1 (101,9; 577,0) n = 11
Околоплодные воды	2050,5 (1829,1; 3320,5) n = 7	2443,5 (1966,3; 2950,5) n = 7

Полученные результаты показали, что у пациенток обеих групп уровень сывороточного лактоферрина материнской крови незначительно превышает концентрацию в пуповинной крови, но в разы меньше, чем в амниотической жидкости. Медиана концентрации этого белка в периферической и пуповинной крови женщин с плацентитом в 1,8 раза больше, чем у обследованных без воспалительных изменений в последе. У пациенток группы А амниотический уровень лактоферрина превышал материнский в 4,1 раза, а умбиликальный — в 4,8 раза. Содержание лактоферрина в околоплодных водах женщин без выявленных признаков воспаления плаценты выше концентрации в материнской крови в 8,8 раза, а в пуповинной — в 10,1 раза. Минимальный уровень этого белка в пуповинной крови, составивший 2 нг/мл был выявлен у ребенка пациентки с многоводием и отсутствием признаков воспаления последа. Способ родоразрешения был путем операции кесарево сечение по экстренным показаниям в связи с клинически узким тазом, вес ребенка — 4275 г, оценка по шкале Апгар составила 5/8 баллов и в раннем неонатальном периоде был выставлен диагноз «Хроническая гипоксия. Асфиксия умеренной степени тяжести. Конъюгационная желтуха».

При анализе уровня лактоферрина в периферической крови у пациенток в родах установлено, что снижение его ниже 25 процентиля ассоциируется с увеличением частоты развития многоводия (25 ± 7.2 % против 66.7 ± 16.7 %, соответственно, OR = 6.95 % CI от 1.2 до 29.1), и уменьшением риска развития патологической незрелости плаценты (63.9 ± 8 % против 22.2 ± 14.7 %, OR = 6.2.95 % CI от 1.1 до 34.3).

Проанализировали содержание ά-IF и γ-IF в сыворотке материнской и пуповинной крови, околоплодных водах женщин группы высокого перинатального риска, результаты отражены в таблице 2. Приведенные данные свидетельствуют, что плацентит сопровождается значимым изменением уровня ά-ІГ в периферической крови. Его содержание максимально в крови родильниц при наличии признаков воспаления последа в 326 раз превышает концентрацию у пациенток без плацентита. Медиана концентрации ά-ІF во всех исследованных биологических жидкостях женщин группы Б была одинакова. Максимальный уровень этого цитокина в периферической крови (50,5 пг/мл) был выявлен у пациентки с многоводием и плацентитом, ассоциированный с высоким максимальным содержанием у-IF в материнской и плодовой крови. Оценка новорожденного этой женщины по шкале Апгар 1/4 балла. Максимальное значение ά-ІГ в пуповинной крови равное 32,5 пг/мл детектировано у ребенка, рожденного пациенткой с нормальным объемом околоплодных вод и отсутствием признаков воспаления последа. Роды произошли через естественные родовые пути, вес ребенка при рождении был 4440 г, в пуповинной крови уровни лактоферрина у-IF и RA-IL-1β также были максимальны.

Таблица 2 — Содержание α –IF и γ –IF в биологических жидкостях женщин группы высокого перинатального риска, пг/мл, Ме (25; 75 %).

Субстрат	Группа А	Группа Б
ά-IF в сыворотке материнской крови	0,6525 (0,0018; 4,7863) n = 22	0,0020 (0,0018; 0,1850) n = 17
ά-IF в сыворотке пуповинной крови	0,0017(0,0016; 0,0019)n = 9	0,0018(0,0016; 3,8750) n = 7
ά–IF в околоплодных водах	0,0019(0,0016; 0,0358)n = 6	0,0016(0,0013;0,0016) n = 5
γ-IF в сыворотке материнской крови	6,0 (4,6; 7,0) n = 22	5,0 (3,7; 6,3) n = 17
γ-IF в сыворотке пуповинной крови	3,1 (1,5;3,7)* n = 9	4,9 (4,0; 6,1) n = 7
γ–IF в околоплодных водах	8,7 (7,2; 20,2) n = 6	26,5 (24,5; 30,6) n =5

^{*} статистически значимое различие с группой Б (Z = -2.3 p = 0.02).

Уровень γ –IF в сыворотке периферической крови обследованных группы A превышает таковой пуповинной крови в 1,9 раза, а у родильниц группы Б — их медианы математически неразличимы. Между группами имеется значимое различие в его концентрации в пуповинной крови. Содержание этого цитокина в амниотической жидкости женщин при плацентите в 3,1 раза ниже, чем у пациенток с последом без воспалительных изменений, что связано с антиинфекционными свойствами околоплодных вод.

Соотношение исследованных интерферонов в амниотической жидкости женщин группы A составило 3643,6 (929,5; 6242,6) условных единиц, в группе Б — 18853,9 (16358,0; 24705,4), Z = -2,0 p = 0,05.

Уровни IL-1β и RA-IL-1β у обследованных показаны в таблице 3.

Таблица 3 — Концентрация IL-1 β и RA-IL-1 β в биологических жидкостях женщин группы высокого перинатального риска, пг/мл, Ме (25; 75 %)

Показатель	Группа А	Группа Б
IL-1β в материнской крови	0.587 (0.004; 1.183) n = 20	0.052 (0; 1.082) n = 18
IL-1β в пуповинной крови	0 (0; 0) n = 9	0.108(0.053; 5.143) n = 7
IL-1β в околоплодных водах	106,6 (42,9; 160,6) n = 5	22,4(15,1;63,3) n = 5
RA-IL-1β в материнской крови	587,6 (490,0; 1020,8) n = 20	688,4(327,1; 1324,0) n = 18
RA-IL-1β в пуповинной крови	468,1 (309,4; 1226,0) n = 9	1607,0 (880,3; 2508,5) n = 7
RA-IL-1β в околоплодных водах	1445* (1376; 3750) n = 5	2322,0 (1165,0; 2600,0) n = 5

^{*} статистически значимое различие с группой Б (Z = -2.0 p = 0.05).

Установлено, что медиана концентрации IL-1 β в материнской крови пациенток группы A превышает таковую женщин группы Б в 11,3 раза, а в амниотической жидкости — в 4,8 раза. При этом уровень данного цитокина в околоплодных водах выше, чем в периферической крови в 181,6 раза — при плацентите и в 430,8 раза — при отсутствии воспалительных изменений последа. Нами выявлено, что содержание RA-IL-1 β у родильниц группы A минимально в пуповинной крови, а максимально — в амниотической жидкости. У обследованных группы Б наименьшая концентрация этого цитокина была в периферической крови, а наибольшая — также в околоплодных водах. Воспалительные изменения последа ассоциируются со снижением уровня RA-IL-1 β в 1,2 раза в материнской крови, в 3,4 раза — в пуповинной, и в 1,6 раза (Z = -2,0 p = 0,05) — в амниотической жидкости.

В периферической крови женщин группы А содержание лактоферрина и $\acute{\alpha}$ –IF связаны обратной умеренной корреляционной связью, r_s = -0,6, p = 0,005. При воспалительных изменениях последа выявлена прямая корреляционная связь сывороточного уровня $\acute{\alpha}$ –IF и концентрации γ –IF в материнской (r_s = 0,6, p = 0,006) и пуповинной (r_s = 0,8, p = 0,02) крови. Умбиликальное содержание $\acute{\alpha}$ –IF у обследованных с плацентитом ассоциировано с абсолютным количеством лимфоцитов в крови матери, r_s = 0,9, p = 0,04. Сывороточная концентрация γ –IF у женщин группы А коррелирует с его уровнем в амниотической жидкости, r_s = -0,9, p = 0,005. При плацентите выявлена прямая сильная корреляционная связь содержания RA-IL-1 β в материнской и пуповинной крови, r_s = 0,8, p = 0,005.

У женщин группы Б установлена корреляционная связь амниотической концентрации лактоферрина с IL-1 β ($r_s=0.9$, p=0.04), а также с сывороточным содержанием RA-IL-1 β ($r_s=-0.8$, p=0.04). При отсутствии признаков воспаления последа уровни α -IF и γ -IF в крови родильницы коррелируют, $r_s=0.5$, p=0.03. Выявлено корреляционная связь содержания γ -IF и RA-IL-1 β в пуповинной крови у пациенток без плацентита, $r_s=0.8$, p=0.02. Концентрация IL-1 β в периферической крови пациенток группы Б коррелирует с уровнем γ -IF в околоплодных водах, $r_s=0.9$, p=0.04.

При исследовании интерпроцентильных интервалов содержания иммунных молекул установлено, что в периферической крови женщин с плацентитом при крайне низком уровне лактоферрина преобладают высокие концентрации $\acute{\alpha}$ –IF, а в диапазоне выше 75 процентиля представлены только крайние квартили интерферона, что отражает дисбаланс протективных механизмов. В четвертом квартиле содержания $\acute{\alpha}$ –IF у женщин группы Б преобладает низкая концентрация LR- = 2,0, что свидетельствует об антагонизме этих иммунных молекул. У родильниц группы А в диапазоне концентраций $\acute{\alpha}$ –IF более 75 процентиля преобладает уровень γ –IF, соответствующий четвертому квартилю LR+ = 2,5. У женщин с плацентитом при уровне IL-1 β менее 25 процентиля содержание RA-IL-1 β представлено значениями выше 2 квартиля, а у пациенток без плацентита — не превышают 3 квартиль LR+ = 2,1. Парамедианная концентрация IL-1 β у родильниц с плацентитом ассоциируется с парамедианными значениями RA-IL-1 β , а у обследованных без плацентита — с содержанием RA-IL-1 β менее 25 процентиля LR+ = 4,2.

У пациенток с плацентитом выявлена прямая сильная корреляционная связь между уровнем LR в околоплодных водах и признаками гематогенного пути инфицирования последа ($r_s = 0.9$, p = 0.01). Умбиликальная концентрация α -IF коррелирует с выявлением признаков патологической незрелости плаценты ($r_s = 0.8$, p = 0.006). Нами выявлена прямая сильная корреляционная связь содержания γ -IF в амниотической жидкости и плацентарно-плодового коэффициента ($r_s = 0.9$, p = 0.005). Уровень RA-IL-1 β в крови матери коррелирует с патологической незрелостью плаценты ($r_s = -0.5$, p = 0.05), петрификатами ($r_s = 0.6$, p = 0.01) и васкулитом ($r_s = -0.5$, p = 0.05). Содержание этого цитокина в пуповинной крови связано корреляционной связью с наличием петрификатов ($r_s = 0.8$, p = 0.007) и ангиоматоза ($r_s = -0.7$, p = 0.03). Выявлена сильная корреляционная связь концентрации RA-IL-1 β в околоплодных водах и признаками гематогенного пути инфицирования последа и выпадением фибриноида (в обоих случаях $r_s = -0.9$, p = 0.04), а также с выявлением петрификатов и полнокровия ворсин (в обоих случаях $r_s = 0.9$, p = 0.04).

Выводы

Повышение уровня LR, α —IF и IL-1 β в материнской крови отражает связь инфекционной патологии с активацией синтеза медиаторов воспаления, что впоследствии приводит к истощению функциональных резервов иммунокомпетентных клеток, продуцирующих белки антимикробной защиты.

Снижение содержания RA-IL-1β в материнской крови ассоциируется с недостаточным ограничением провоспалительной активности IL-1β, перестройкой межклеточных взаимодействий и неконтролируемым запуском каскада иммунных реакций.

Повышенная концентрация провоспалительных цитокинов в амниотической жидкости при многоводии по сравнению с нормальным объемом околоплодных вод свидетельствует об инфекционном генезе данной патологии и позволяет рассматривать амниотическую жидкость как иммунологически активную среду, защищающую плод.

Определение цитокинов может служить для прогнозирования неблагоприятного течения раннего неонатального периода при повышенном перинатальном риске у матери.

ЛИТЕРАТУРА

- 1. Histologic chorioamnionitis and umbilical serum levels of pro-inflammatory cytokines and cytokine inhibitors / H. Dollnera [et al.] // An International Journal of Obstetrics and Gynecology. 2002. Vol. 109, № 6. P. 534–539.
 - 2. McGegor, J. A. Preterm premature rupture of membranes / J. A. McGegor, French J. I. // Lancet. 1996. Vol. 346, P. 1271–1282.
- 3. A disproportionate increase in IL-1 over IL-1ra in the cervicovaginal secretions of pregnant women with altered vaginal microflora correlates with preterm birth / R. Mehmet [et al.] // An International Journal of Obstetrics and Gynecology. 2004. Vol. 190, № 5. P. 1191–1197.
- 4. The natural interleukin-1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: the effect of gestational age, fetal gender, and intrauterine infection / R. Romero [et al.] // An American Journal of Obstetrics and Gynecology. 1994. Vol. 171. P. 912–921.