ЖКБ и панкреатит являются наиболее значимыми среди нехирургических патологий в анамнезе пациентов с ОКН.

Сочетание данных патологий в анамнезе является неблагоприятным прогностическим признаком и повышает риск возникновения ОКН.

ЛИТЕРАТУРА

- $1.\ \textit{Ба, M. P.}$ Тактика ведения больных с острой тонкокишечной механической непроходимостью: дис. ... канд. мед. наук: $14.01.17\ /$ M. P. Ба. M., $2015.\ 143$ c.
- 2. Миннуллин, М. М. Диагностика и хирургическое лечение больных с острой кишечной непроходимостью / М. М. Миннуллин, Д. М. Красильников, Я. Ю. Николаев // ПМ. 2014. № 2 (78). URL: https://cyberleninka.ru/article/n/diagnostika-i-hirurgicheskoe-lechenie-bolnyh-s-ostroy-kishechnoy-neprohodimostyu (дата обращения: 24.03.2022).
- 3. Острая кишечная непроходимость: клинические рекомендации / И. В. Маев [и др.]. М.: Доказательная гастроэнтерология-1, 2013. 36 с.

УДК 611.013:[611.133.33+611.145.11] ЭМБРИОГЕНЕЗ СОСУДОВ ГОЛОВНОГО МОЗГА ЧЕЛОВЕКА

Шпаковская М. Ю., Шпаковский А. Ю.

Научный руководитель: к.м.н., доцент И. Л. Кравцова

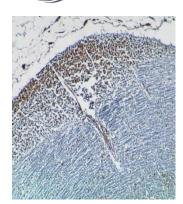
Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

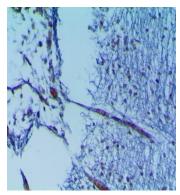
Введение

Изучение эмбриогенеза, анатомии и физиологии сосудистой системы головного мозга человека помогают понять развитие патологических изменений в ней при энцефалопатиях, деменции, рассеянном склерозе, цереброваскулярной патологии [2, 3]. Морфофункциональное состояние сосудов, в частности микроциркуляторного русла, определяет характер и динамику компенсаторно-приспособительных процессов, происходящих в мозге [1].

Пель

Определить сроки врастания сосудов в нервную ткань и формирование вокругсосудистых пространств в мозге человека.


Материал и методы исследования


Объектом исследования являлись эмбрионы и плоды человека. Материал фиксировали в нейтральном формалине и после проводки через хлороформ заливали в парафин. Серийные срезы толщиной 4–6 мкм окрашивали гематоксилином и эозином, использовали импрегнацию серебром в сочетании с гематоксилином. С помощью окуляр-микрометра при увеличении 10×40 измеряли площадь вокругсосудистых пространств. Для получения статистически достоверных результатов измерения осуществляли в 10 полях зрения. При помощи компьютерной программы по цитофотометрии рассчитывали площадь пространств Вирхова-Робена.

Результаты исследования и их обсуждение

При изучении гистологических препаратов 7-недельных эмбрионов человека выявлено врастание кровеносных сосудов из мозговых оболочек (рисунок 1).

Врастание сосудов наблюдается одновременно в разных местах коры мозга перпендикулярно ее поверхности. В это же время начинает формироваться пограничная глиальная мембрана (ПГМ), которая обеспечивает анатомическую целостность мозга. На 8–9 неделях эмбриогенеза в мозговых оболочках продолжается активное формирование сосудов: венозных синусов, арахноидальных артерий и вен, пиального капиллярного сплетения, которое играет важнейшую роль в васкуляризации коры в эмбриогенезе и создании дренажной прелимфатической системы (рисунок 2).

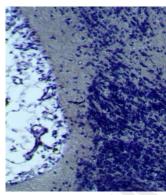
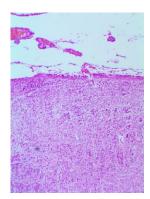
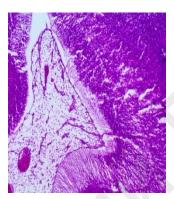




Рисунок 1 — Врастание сосудов разного диаметра у зародышей человека на 7 неделе эмбриогенеза. Окраска: импрегнация серебром и гематоксилин, увеличение: x100 (A), x400(Б,В)

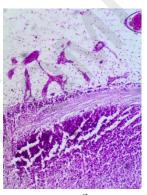
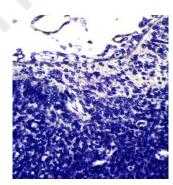
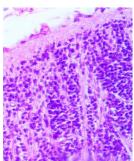




Рисунок 2 — Врастание сосудов у плодов человека на 9 неделе эмбриогенеза. Окраска: гематоксилин и эозин, увеличение: x100

После врастания происходит соединение всех прободающих сосудов при помощи анастомозирующих капилляров. Так начинается формирование наружного внутримозгового компонента сосудистой системы мозга. В серое вещество входит значительно больше сосудов, чем в белое. Дополнительные сосуды, врастающие в серое вещество, формируют внутренние капиллярные сплетения. Врастание дополнительных сосудов происходит на протяжении всего эмбриогенеза и продолжается после рождения.

При перфорации пограничной глиальной ПГМ сосудами формируются воронкообразные пространства между базальной мембраной капилляра и пограничной глиальной мембраной, которые называют пространства Вирхова-Робена (ПВР). Эти пространства сопровождают прободающие сосуды по всей их длине, имеют разные размеры и форму, сообщаются с менингеальными пространствами, что обеспечивает медленный обмен жидкостью и клетками между мозгом и мозговыми оболочками, обеспечивая дренирование.

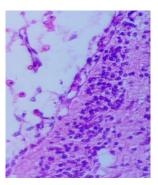


Рисунок 3 — Пространства Вирхова-Робена вокруг сосудов у плодов человека. Окраска: гематоксилин и эозин, увеличение: x400

Площадь пространств Вирхова-Робена вокруг большинства сосудов малого диаметра составляет 2,7 (1,5; 4,8) мкм². С увеличением диаметра сосудов наблюдается увеличение и ПВР. В течение эмбрионального периода развития отмечается не только увеличение размеров, но и изменение формы ПВР. Внутренний внутримозговой компонент сосудистой системы мозга представлен внутренним капиллярным сплетением, которое образуется между прободающими сосудами в течение развития коры головного мозга. На уровне внутренних капилляров пропадают пространства Вирхова-Робена. Капилляры и глиоциты участвуют в образовании гематоэнцефалического барьера.

Выводы

Таким образом, васкуляризация головного мозга начинается на втором месяце эмбриогенеза и идет параллельно с формированием мозга и его оболочек. Особенностью развивающихся сосудов мозга будет формирование вокруг них пространств Вирхова-Робена и образование обширных капиллярных сетей как в экстрацеребральном, так и в интрацеребральном компонентах сосудистой системы мозга.

ЛИТЕРАТУРА

- 1. *Кравцова, И. Л.* Морфологические особенности и локализация Вирхов-Робеновских пространств в головном мозге / И. Л. Кравцова, М. К. Недзьведь // Проблемы здоровья и экологии. 2013. № 3 (37) C.21–27.
- 2. Marín-Padilla, M. The human brain intracerebral microvascular system: development and structure spaces / M. Marín-Padilla // J. Neuroanat. 2012. Vol. 6. P. 26–38.
- 3. Zhang, E. T. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum / E. T. Zhang, C. B. Inman, R. O. Weller // Journal of Anatomy. 1990. Vol. 170. P. 111–123.

УДК 611.013.37

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ БАЗАЛЬНЫХ ГАНГЛИЕВ КОНЕЧНОГО МОЗГА

Шпаковский А. Ю., Шпаковская М. Ю.

Научный руководитель: к.б.н., доцент В. В. Китель

Учреждение образования «Белорусский государственный медицинский университет» г. Минск, Республика Беларусь

Введение

Базальные ядра являются важнейшими подкорковыми структурами конечного мозга. Традиционно базальные ядра (ганглии) разделяют на стриатум (corpus striatum) и паллидум (globus pallidus). Стриатум включает в себя хвостатое ядро, скорлупу, а паллидум бледный шар. Важнейшими структурами, обладающими множеством пространственных связей со стриатумом и паллидумом являются субталамическое ядро, миндалина, черная субстанция среднего мозга, ограда [1, 4].

Проявлениями нарушений базальных ядер являются гипер- и гипокинезы. Изучение эмбрионального развития базальных ядер позволяет установить основные периоды, когда организм наиболее восприимчив к тератогенам, способных вызывать нарушения дифференцировки, миграции, пролиферации и детерминации нейронов [2, 3].

Цель

Изучение и установление основных этапов эмбрионального развития базальных ядер.

Материал и методы исследования

Материалами для исследования послужили 16 серий эмбриональных срезов, импрегнированных азотнокислым серебром по методу Бильшовского-Буке из коллекции кафедры нормальной анатомии БГМУ. Морфометрический анализ изображений, зафиксированных при помощи цифровой широкоугольной камеры с разрешением 1080×2340 пикселей, проводился в программе IMAGEJ. Анализ морфометрических показателей производился в пакете IBM SPSS STATISTICS 23.