опубликовал 14 статей и тезисов докладов, активно участвовал в Республиканских и Общесоюзных конференциях, областных и городских обществах отоларингологов.

С 1979 г. Петр Петрович переходит на работу старшим преподавателем кафедры гражданской обороны Гомельского кооперативного института, а с сентября 1987 по июль 1991 гг. является доцентом этой же кафедры.

С августа 1991 г. Петр Петрович Хоменок переведен на должность старшего преподавателя кафедры анатомии человека с курсом оперативной хирургии и топографической анатомии Гомельского государственного медицинского института. В сложные годы становления нового Высшего медицинского учреждения Республики Беларусь, П. П. Хоменок всецело отдает себя кафедре, ее оснащению учебно-наглядными пособиями, техническими средствами обучения, составлению учебных программ и планов. Основным направлением деятельности Петра Петровича стало обеспечение учебного процесса анатомическими препаратами, внедрение в него рентген-анатомии. Много внимания им уделяется организации работы научного кружка студентов при кафедре, обучению препарированию, изготовлению музейных препаратов лобных, клиновидных, верхнечелюстных костей с демонстрацией их пазух. Вместе с укреплением материально-технической базы кафедры П. П. Хоменок с 1991 по 2001 гг. выполняет обязанности заведующего учебной частью кафедры, участвует в разработке новых ученых программ по анатомии человека для студентов лечебного, медико-диагностического, медико-профилактического факультетов.

За долгие годы плодотворной научной и педагогической работы доцентом П. П. Хоменком было опубликовано 43 научные и учебно-методические работы, получено более 10 удостоверений на изобретения и 2 патента на полезные модели. Будучи опытным клиницистом, Петр Петрович умел поднять интерес к медицине, повысить мотивацию у студентов, проводя практические занятия или читая лекции. В коллективе всегда пользовался заслуженным уважением и авторитетом, руководством вуза неоднократно поощрялся почетными грамотами и благодарностями.

Светлая память о Петре Петровиче навсегда останется в сердцах тех, кто его знал, коллег и сотрудников, студентов, огромного количества врачей, которым он передал свои знания и бесценный опыт.

УДК 616.155.34

СПОСОБНОСТЬ НЕЙТРОФИЛОВ К ОБРАЗОВАНИЮ ВНЕКЛЕТОЧНЫХ ЛОВУШЕК В РАЗЛИЧНЫХ МОДЕЛЬНЫХ СИСТЕМАХ

Железко В. В., Слышова О. Ю.

Научный руководитель: д.м.н., профессор *И. А. Новикова* Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Одной из форм реализации функциональной активности нейтрофильных гранулоцитов (НГ) является высвобождение во внеклеточное пространство нейтрофильных внеклеточных ловушек (neutrophil extracellular traps, NET) [1]. NET представляют собой сетеподобные структуры, в состав которых входят ДНК, гистоны, различные белки и ферменты гранул, такие как эластаза и миелопероксидаза и др. Показана роль NET в патогенезе ряда заболеваний, что обусловливает интерес к их изучению [2]. В то же время отсутствует единый методологический подход к оценке NET-образующих свойств лейкоцитов в плане выделения клеток, длительности и условий их культивирования, действия индукторов и т. д.

Цель

Подобрать оптимальные условия оценки способности нейтрофилов крови к образованию NET.

Материалы и методы исследования

Исследовали лейкоциты 7 практически здоровых лиц, не имеющих клиниколабораторных признаков иммунологической недостаточности. Клетки получали отстаиванием гепаринизированной крови ($10~{\rm Eg/mn}$) в течение 45 минут при $37~{\rm ^{\circ}C}$. Количество нейтрофильных гранулоцитов в суспензии доводили до концентрации 5×10^6 клеток/мл путем разведения необходимым количеством фосфатно-солевого буфера (pH=7,4).

Интенсивность образования NET оценивали после инкубации клеточной взвеси в течение 30 и 150 минут при 37 °C в среде RPMI-1640 без стимулятора (спонтанный уровень, NETcп) и в присутствии стимуляторов (стимулированный уровень, NETcт). В качестве индукторов использовали растворимые продукты S. aureus (надосадочная жидкость после культивирования в жидкой питательной среде суточной культуры S. aureus), пирогенал (7 мкг/мл) и инактивированный S. aureus (10^8 KOE/мл, контроль по стандарту мутности шкалы McFarland). Препараты окрашивали 0,04% водным раствором акридинового оранжевого в течение 2 минут и микроскопировали с помощью люминесцентного микроскопа (λ возбуждения 490 нм; λ змиссии 520 нм; увеличение ×1000). Производили подсчет четко определяемых NET, подсчитывая не менее 200 нейтрофилов.

Статистический анализ проводился с использованием непараметрических методов, Результаты исследования и их обсуждение

Образование NET в зависимости от длительности культивирования клеток и индуктора представлено в таблице 1.

Таблица 1 — Количество NET (%) в различных тест-системах

Тест-система	Здоровые лица (n = 7)	
	30 минут	150 минут
Спонтанный уровень NET	2,0 (2,0;3,0)	5,0 (3,0; 6,0)*
Пирогенал (7 мкг/мл)	3,0 (2,0; 4,0)	7,0 (5,0; 9,0)*
Растворимые продукты <i>S. aureus</i>	5,0 (3,0; 6,0)**	7,0 (5,0; 11,0)*/**
Инактивированный <i>S. aureus</i> (10 ⁸ КОЕ/мл)	5,0 (4,0; 8,0)**	12,0 (8,0; 15,0)*/**

Примечание. * различия значимы (p < 0.05) в сравнении с временем инкубации 30 минут; ** различия значимы (p < 0.05) в сравнении со спонтанным уровнем (NET сп). данные представлены в виде Me (25%;75%).

Как видно из таблицы 1, культивирование лейкоцитов здоровых лиц в течение 30 минут в среде без индуктора (NETcn) приводило к образованию небольшого, но определимого количества NET 2,0 (2,0; 3,0). Добавление в культуру клеток пирогенала (7 мкг/мл) не изменяло количество NET, тогда как под влиянием растворимых продуктов S. aureus и инактивированного S. aureus наблюдалось увеличение NET-образующих свойств нейтрофилов (p = 0.02 и p = 0.02 соответственно). При увеличении длительности инкубации до 150 минут уровень NETcn увеличился в 2,5 раза (p=0,04). Аналогичные изменения отмечены и в культурах стимулированных лейкоцитов (таблица 1). Максимальный прирост количества NET обнаруживался при использовании в качестве индуктора S. aureus (в 2,4 раза p = 0.02), при использовании пирогенала и растворимых продуктов S. aureus увеличение NET также было значительным (p < 0.02).

Результаты исследования свидетельствуют о том, что NET-образующие свойства лейкоцитов значительно варьируют в зависимости от длительности инкубации клеточных культур и индукторов экструзии NET.

Выводы

- 1. Инкубация клеточных культур лейкоцитов в течение 30 минут при 37 °C достаточна для оценки NET-образующих свойств лейкоцитов.
- 2. В качестве индуктора экструзии NET можно рекомендовать инактивированный $S.~aureus~(10^8~{\rm KOE/m}\pi)$.

ЛИТЕРАТУРА

^{1.} Neutrophil extracellular traps kill bacteria / V. Brinkmann [et al.] // Sciense. — 2004. — Vol. 303. — P. 1532–1535. 2. *Fuchs, T. A.* Novel cell death program leads to neutrophil extracellular traps / T. A. Fuchs // The Journal of Cell Biology. — 2007. — Vol. 176. — P. 231–241.