ЛИТЕРАТУРА

- 1. *Садовникова, И. И.* Циррозы печени. Вопросы этиологии, патогенеза, клиники, диагностики, лечения / И. И. Садовникова // РМЖ. 2003. Т. 5. № 2.
- 2. Constandinou, C. Modeling liver fibrosis in rodents / C. Constandinou, N. Henderson, J. P. Iredale // Methods Mol Med. 2005. P. 237–250.
- 3. *Jimenez, W.* Carbon tetrachloride induced cirrhosis in rats: a useful tool for investigating the pathogenesis of ascites in chronic liver disease / W. Jimenez, J. Claria, V. Arroyo // J Gastroenterol Hepatol. 1992. 9097 p.
 - 4. Автандилов, Г. Г. Медицинская морфометрия / Г. Г. Автандилов. М.: Медицина, 1990. 383 с.
- 5. *Mullen, K. D.* Problems with animal models of chronic liver disease: suggestions for improvement in standardization / KD Mullen, AJ McCullough // Hepatology. 1989. P. 500–503.

УДК 612.73/74:612.013.7:796.8

ВОЗРАСТНАЯ ДИНАМИКА ОСНОВНЫХ ПОКАЗАТЕЛЕЙ ЭНЕРГЕТИЧЕСКОГО ОБЕСПЕЧЕНИЯ МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИУ СПОРТСМЕНОВ-ГРЕБЦОВ НА БАЙДАРКАХ И КАНОЭ В ПОДГОТОВИТЕЛЬНОМ ПЕРИОДЕ

Молодой Е. Г.

Научный руководитель: к.б.н., доцент Н. И. Штаненко Учреждение образования «Гомельский государственный медицинский университет» Учреждение здравоохранения Гомельский областной диспансер спортивной медицины г. Гомель, Республика Беларусь

Введение

Спортивная подготовка в различных видах спорта постоянно совершенствуется в Беларуси, с каждым годом предъявляются более высокие требования к тренировочным программам и к возможностям организма спортсмена [1]. Одной из главных задач в циклических видах спорта, к которым относится гребля на байдарках и каноэ, является развитие выносливости (аэробных возможностей) как одного из основных составляющих мастерства спортсмена. Для достижения наилучших результатов и сохранения здоровьесберегающего принципа тренировок необходимо планировать нагрузки с учетом влияния возрастных особенностей спортсменов, контроля мощности, емкости и эффективности анаэробных и аэробных механизмов энергообеспечения в тренировочном процессе [2]. Выделяют три обобщенных механизма энергообеспечения, протекающих при мышечных нагрузках: анаэробно-креатинфосфатный, анаэробно-гликолитический и аэробная мощность. В соответствии с ними выделяют три основные зоны интенсивности: аэробная зона, развивающая зона и анаэробная зона. Оценка динамики параметров энергообеспечения мышечной деятельности у разных возрастных групп спортсменов является актуальным направлением исследований, потому что признаки, обусловленные естественным возрастным развитием, переплетаются с признаками, возникающими в итоге адаптации организма к систематическим занятиям спортом.

Цель

Оценка влияния тренировочных нагрузок на основные показатели энергообеспечения мышечной деятельности, и анализ возрастной динамики их изменений при построении тренировочного процесса у гребцов на байдарках и каноэ для определения оптимального уровня нагрузки в каждой возрастной группе спортсменов.

Материалы и методы

Исследование проводилось на основе данных, предоставленных сотрудниками НПЦ спортивной медицины УЗ «ГОДСМ». Выполнено обследование 32 спортсменов, которые для удобства исследования были разделены на 3 возрастные группы (13–15 лет, 16-18 лет и 19-21 год). Средний возраст 17 ± 4 лет. Вид спорта — гребля на байдарках и каноэ. Основные параметры системы энергообеспечения мышечной деятельности спортсменов оценивались с помощью АПК «D-тест».

Полученные данные обрабатывались методами параметрического и непараметрического анализа с использованием стандартного пакета прикладных программ «Statistica» 12.5 с расчетом критерия Спирмана. Достоверными признавались показатели при р < 0,05.

Результаты исследования и их обсуждение

В результате сравнительного анализа динамики основных показателей энергообеспечения мышечной деятельности у различных возрастных групп спортсменов был выявлен разнонаправленный характер изменений у всех групп обследованных, отличающихся по возрасту и квалификации. В таблице 1 представлены усредненные данные $(M\pm\delta)$ и пределы колебаний показателей энергообеспечениях у исследуемых групп спортсменов, из которых следует, что спортсмены характеризовались показателями с довольно широким диапазоном варьирования.

Таблица 1 — Показатели энергообеспечения и адаптации к мышечным нагрузкам у исследуемых возрастных групп спортсменов-гребцов на байдарках и каноэ до и после тренировки

решровки												
Усредненные показатели	I (13–15 лет)				II (16–18 лет)				III (19–21 год)			
	Д/т	Min	Max	Π/T	Д/т	Min	Max	П/т	Д/т	Min	Max	П/т
	$M\pm\delta$			$M\pm\delta$	$M\pm\delta$			$M \pm \delta$	$M \pm \delta$			$M \pm \delta$
АнаэробКр	38,4±2,45	33,4	56,8	49,5±1,98	48,5±3,1	30,9	61,6	42,9±2,87	55,4±2,22	36,5	66,9	55,3±1,86
АнаэробГл	$40,7 \pm 0,14$	27,6	51,4	42,6±3,33	42,0±2,00	26,3	53,2	43,19±1,4	38,8±3,11	30,8	53,4	41,1±4,32
АэробМ	54,0±2,00	49,2	63,8	56,8±0,42	51,7±1,08	33,4	65,0	53,20±3,1	53,2±3,27	51,1	57,7	53,4±2,43
АнаэробФ	134,5±1,2	117,5	154,8	138,3±2,1	135,0±2,0	122,0	153,4	139,4±2,4	149,3±2,3	123,1	166,6	156,8±1,1
W ПАНО	58,5±1,57	53,8	64,6	57,1±0,32	54,5±1,67	38,4	68,4	55,6±2,55	58,15±1,4	51,5	62,8	56,4±2,79
OME	202,4±0,9	186,4	217,9	201,4±0,7	194,7±4,3	174,7	224,9	194,8±1,6	205,6±4,2	192,1	213,6	206,7±2,1
ЧСС ПАНО	154,0±2,4	141,3	169,0	156,6±0,2	149,5±1,4	122,6	167,8	151,3±1,3	150,2±3,4	144,2	154,4	151,1±0,1
АэробИ	31,6±0,13	27,7	37,8	32,4±2,49	28,97±2,7	12,4	39,4	30,2±3,93	31,0±0,17	22,0	35,2	$30,2\pm2,87$
МПК	61,8±1,32	57,4	77,6	63,1±0,12	60,5±1,10	38,8	69,6	61,9±2,31	61,7±4,32	51,7	69,3	63,1±1,13
ЧСС МПК	162,8±0,1	154,0	184,2	170,7±2,95	155,5±2,8	133,6	165,2	161,5±0,3	163,7±2,4	157,2	170,2	164,7±2,2
ЧСС уд / мин	90,0±0,53	79	102	103±0,24	90,6±3,65	81	100	91,0±1,21	75,3±0,23	70	82	89,0±3,63

Результаты исследования показали, что физическое развитие всех возрастных групп спортсменов соответствует возрастным нормам людей, не занимающихся спортом. Наи-больший прирост показателей физического развития наблюдается в период от 13–16 лет.

В ходе исследования у спортсменов младшей возрастной группы было выявлено достоверное увеличение показателей энергообеспечения как в аэробном, так и в анаэробном режимах. Так, за подготовительный период у данной группы наблюдается увеличение АнКФ. Вероятно, это связано с несовершенством нейрогуморальной регуляции и возрастными особенностями пубертатного периода, в котором происходит последняя значительная перестройка организма и наряду с определенным уровнем развития аэробных возможностей, происходит переход на анаэробный режим работы при выполнении физических нагрузок.

С другой стороны, это свидетельствует об адекватных возрастным особенностям тренировках, направленных на развитие аэробных возможностей (выносливости), суть которых заключается в сбережении формирующегося организма. Кроме того, наблюдаются достоверные корреляционные различия (р < 0,05) между показателем анаэробного гликолиза и ОМЕ — универсальным показателем, отражающим уровень метаболической активности организма. Наблюдается увеличение доли анаэробного гликолиза. Спортсмены средней возрастной группы (16–18 лет) характеризуются относительным увеличением показателей анаэробного фонда и АнКФ по сравнению с предыдущей группой. Это свидетельствует о формировании компенсаторных механизмов, препятствующих переходу спортсменов в анаэробную зону. Уменьшение АнКФ, АнГликолиза и относительного уровня ОМЕ в процессе тренировок связано с большими энергетическими затратами при физических нагрузках по сравнению с взрослыми спортсменами. Это обусловлено тем, что компенсаторные ме-

ханизмы окончательно не сформированы, а уровень нагрузок значительно выше по сравнению с младшей возрастной группой. Преимущественный вид тренеровок — силовые, направленные на развитие анаэробно-гликолитических возможностей организма спортсмена. Иная закономерность наблюдается у спортсменов старшей возрастной группы (19—21 г). Идет тенденция к снижению величин анаэробных параметров и увеличению доли аэробных возможностей в энергообеспечении. Так, несущественная разница в расходе АнКФ до и после нагрузки связана с высоким уровнем развития системы регуляции механизмов энергообеспечения и адаптации спортсменов к систематической физической нагрузке.

В процессе тренировок за подготовительный период у данной группы наблюдается относительное уменьшение ЧСС по сравнению с двумя остальными группами на 40–60 % (от 75 уд/мин до 89 уд/мин), эта реакция и адаптивное изменение ССС являются проявлением экономичности сердечной деятельности. Она дает возможность дольше работать в условиях кислородного долга и формируется у спортсменов старшей возрастной группы. Поэтому для такой возрастной группы используются максимальные и субмаксимальные нагрузки, преимущественно силовой вид тренировок.

Выводы

- 1. При планировании спортивной подготовки спортсменов, а также при определении объемов СФП и ОФП необходимо учитывать возрастные особенности развития и характер механизмов энергообеспечения.
- 2. Оценка возрастной динамики развития энергообеспечения мышечной деятельности является важным фактором построения оптимального тренировочного процесса.
- 3. Оптимальные и адекватные каждому возрастному периоду нагрузки приводят к развитию долговременной адаптации и к переходу спортсмена в состояние тренированности.

ЛИТЕРАТУРА

- 1. *Чертов, О. В.* Диагностика функционального состояния спортсменов в гребле на байдарках и каноэ в круглогодичном тренировочном цикле с использованием современного навигационного оборудования / О. В. Чертов / Известия Южного федерального университета. Педагогические науки, 2011. № 12. С. 81–86.
 - 2. Петер, Янсен. ЧСС, лактат и тренировки на выносливость: пер. с англ. / Янсен Петер. Мурманск: Тулома, 2006. 160 с.
 - 3. *Меерсон, Ф. З.* Адаптационная медицина: концепция долговременной адаптации / Ф.З.Меерсон. М.: Дело, 1993. 138 с.
- 4. Сравнительный анализ функционального состояния спортсменов при тренировке в разных зонах энергообеспечения мышечной деятельности // Проблемы и перспективы развития современной медицины / Н. И. Штаненко [и др.]. Гомель: ГомГМУ, 2013 12 с.

УДК 616.831.31-005.4-036.12:612.881

ПРОСТРАНСТВЕННАЯ ДЕЗОРГАНИЗАЦИЯ ПРИ ХРОНИЧЕСКОЙ ИШЕМИИ ГОЛОВНОГО МОЗГА

Мороз Д. Н., Кравцова О. И.

Научные руководители: доцент, к.м.н. Н. Н. Усова, Л. А. Лемешков

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Ежегодно число лиц пожилого и старческого возраста в мире прогрессивно увеличивается, что ставит перед врачами всех специальностей новые задачи, в виду специфики заболеваний у пациентов старших возрастных групп [1].

Когнитивные расстройства в пожилом и старческом возрасте быстро приводят к дезадаптации пациентов, нарушению самообслуживания и передвижения, ложатся тяжелым бременем на плечи родственников. У пациентов с хронической ишемией головного мозга патология высших корковых функций зачастую выходит на первый план в клинической картине заболевания [1].