ЛИТЕРАТУРА

- 1. Usefulness of presepsin measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome / T. Shozushima [et al.] // Infect Chemother. 2011. Vol. 17, № 6. P. 764–769.
 - 2. Chipp, E. Sepsis in Burns / E. Chipp, C. Milner, A. Blackburn // Annals of Plastic Surgery. 2010. Vol. 65, № 2. P. 228–236.
- 3. Zhylinski, Y. Diagnostic difficultly of sepsis in severely burned patients / Y. Zhylinski, S. Alekseyau, I. Zelenko // Paper presented at Actual problems of medicine, Gomel, Belarus, November 14–15, 2013; eds. S. Melnov, D. Ruzanov. Gomel: Gomel state medical university, 2014. Vol. 2. P. 24–28.
- 4. *Rebrova, O.* Statisticheski analis medicinskich dannych. Primenenie paketa pricladnych program STATISTIKA [Statistical analisys of medical data. The application of program package STATISTIKA] / O. Rebrova. M.: MediaSfera, 2002.
 - 5. Diagnostic criteria and treatment protocol for post-burn sepsis / P. Yizhi [et al.] // Critical Care. 2013. № 17. P. 406.

УДК 616.098:796.2.071.091.2.

ЗАВИСИМОСТЬ ИЗМЕНЕНИЙ СОСТАВА ТЕЛА ПЛОВЦОВ И ОСНОВНЫХ ПАРАМЕТРОВ ЭНЕРГЕТИЧЕСКОГО МЕТАБОЛИЗМА В ДИНАМИКЕ ТРЕНИРОВОЧНОГО ПРОЦЕССА

Жукова А. А.¹, Лавренко А. Н.², Будько Л. А.²

¹Учреждение образования «Гомельский государственный медицинский университет» ²Учреждение здравоохранения «Гомельский областной диспансер спортивной медицины» г. Гомель, Республика Беларусь

Введение

Биоимпедансный анализ — это неинвазивный диагностический метод, позволяющий оценить параметры состава тела, основной обмен и фазовый угол, определить резервные возможности организма и механизмы адаптации к физическим нагрузкам. Биоимпедансный метод даёт возможность обследовать спортсменов в динамике тренировочного и соревновательного циклов, что позволяет грамотно корректировать режим нагрузок, эффективно и своевременно подводить спортсмена к началу соревнований. Функциональные возможности каждого спортсмена определяются также физической аэробной и анаэробной (креатинфосфатной и гликолитической) работоспособностью. Изучение изменений мощности, емкости и эффективности аэробных и анаэробных процессов энергообеспечения пловцов позволяет более подробно охарактеризовать функциональную подготовленность спортсмена [1].

При изучении изменений в составе тела спортсменов пловцов в результате тренировок различной интенсивности и направленности, для нас представляет интерес установление зависимости между значениями расчетных показателей биоимпеданса и показателями аэробных и анаэробных возможностей спортсмена.

Круглогодичные динамические обследования в рамках тренировочного процесса у одних и тех же спортсменов дают информацию об особенностях физической подготовки каждого спортсмена, что открывает новые возможности для управления функциональными резервами организма [2].

Цель

Оценить зависимость динамических изменений показателей состава тела и механизмов аэробного и анаэробного энергообеспечения пловцов.

Материал и методы исследования

Спортсмены, занимающиеся плаванием, обследовались на базе «Гомельского областного диспансера спортивной медицины» г. Гомеля до утренней тренировки. Изучались показатели спортсменов, занимающихся плаванием в возрасте от 18 до 22 лет. Показатели биоимпедансного анализа состава тела измерялись при помощи программно-аппаратного комплекса AB-01 «Медасс». Эргометрические параметры и механизмы энергопродукции исследовались с помощью многофакторной экспресс-диагностики по методу С. А. Душанина с использованием АПК «Д-Тест-3». Результаты исследования перенесены в таблицы Exsel, статистически обработаны программой «Statistica» 6.0.

Результаты исследования и их обсуждение

В результате изучения показателей регистрируемых с помощью приборов АПК «Д-Тест-3» и АПК АВ-01 «Медасс», у каждого из спортсменов были отмечены динамические изменения, как в по-казателях энергетического обеспечения, так и компонентов состава тела и фазового угла. У всех, и индивидуально у каждого спортсмена отчетливо прослеживались некоторые корреляционные зависимости между этими показателями. Результаты исследования представлены в таблице 1.

Таблица 1 — Показатели биоимпедансного анализа состава тела и энергообеспечения пловцов

№ пловца	Биоимпедансный анализ					Показатели энергообеспечения в%			
1	AKM	ЖМ	ЖО	MM	ФУ	креат. (алакт) %	гликол. (лакт.) %	аэроб. мощн.	МПК, %
	61,2	9,8	36,1	54,7	7,7	46,7	45,8	27,8	63,0
	61,6	10,7	36,0	55,0	7,8	46,7	46,5	25,8	62,8
	66,3	11,7	36,8	54,8	8,34	52,6	53,8	25,8	62,8
	63,6	12,1	38,0	54,6	9,11	59,3	53,8	25,6	59,2
2	61,7	6,8	40,3	57,0	7,02	33,1	29,7	25,7	49,4
	58,5	7,2	41,4	57,0	7,83	33,1	33,8	22,6	51,9
	62,7	10,4	44,6	56,5	8,09	38,6	37,3	20,7	48,0
	64,3	15,6	45,1	55,5	8,53	43,7	37,3	20,7	48,0
3	64,0	3,2	36,8	62,4	7,47	37,0	38,3	29,0	62,8
	60,3	6,9	36,8	61,7	8,45	39,8	42,0	28,3	62,2
	65,9	10,9	41,7	59,3	8,99	43,6	43,1	26,5	60,3
	67,2	13,3	43,8	61,3	9,4	44,0	49,3	25,4	57,3
4	65,1	16,9	50,2	55,0	8,77	33,0	40,8	32,5	66,7
	65,9	17,5	51,1	55,7	9,07	34,8	41,2	32,0	67,3
	66,7	18,3	51,9	54,9	9,34	40,7	41,3	32,1	63,1
	67,2	19,8	62,0	54,7	9,62	42,7	42,2	29,5	67,5

Для удобства в данной таблице показатели фазового угла даны по возрастающей величине, таким образом, для остальных параметров легко прослеживается корреляционная зависимость от величины Φ У. При анализе показателей характеризующих мощность гликолитического (лактатного) источника энергообеспечения и показателя фазового угла, была выявлена высокая положительная корреляция (r = 0.985, p < 0.001). Эта зависимость представлена на рисунке 1.

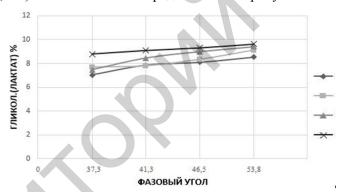


Рисунок 1 — График зависимости величины фазового угла и анаэробной работоспособности

Таким образом, повышение анаэробной работоспособности характеризуется увеличением показателя фазового угла, а изменение аэробной мощности очевидной зависимости от этого показателя не выявило. Однако, увеличение аэробной мощности, по нашим данным находится в отрицательной корреляционной зависимости с жировой массой (r = 0.991, p < 0.001). Так, у всех обследованных спортсменов при снижении процентного содержания жировой массы было отмечено увеличение аэробной мощности энергообеспечения, данная зависимость представлена на рисунке 2.

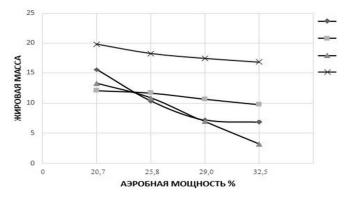


Рисунок 2 — График зависимости аэробной мощности от жировой массы пловцов

Известно, что депонированные жиры имеют высокую и основную значимость как источник энергии при мышечной деятельности, однако, жировая ткань активно используется как источник энергии только при нагрузках умеренной мощности. Напротив, при работе высокой мощности большая концентрация молочной кислоты и активный гликолиз тормозят и снижают участие жиров в обеспечении мышечной деятельности [3]. Исходя из этого, следует, что увеличение аэробной работоспособности идет за счет эффективного расщепления жировых запасов в мышцах, что обуславливает выносливость организма.

Выводы

- 1. Величина фазового угла у спортсменов пловцов положительно связана с анаэробной работо-способностью.
- 2. Увеличение относительной величины жирового компонента массы тела связано со снижением показателя аэробной мощности пловцов.

ЛИТЕРАТУРА

- 1. Душанин, С. А. Биоэнергетический мониторинг в спорте: новые принципы экспресс-контроля аэробного и анаэробного порога / С. А. Душанин // Основы управления тренировочным процессом спортсменов : сб. науч. трудов / отв. ред. В. Н. Платонов. Киев: КГИФК, 1982. С. 80–88.
 - 2. Биоимпедансный анализ состава тела человека / Д. В. Николаев [и др.]. М.: Наука, 2009. С. 392.
- 3. *Корнеева, И. Т.* Биоимпедансный анализ состава тела как метод оценки функционального состояния юных спортсменов / И. Т. Корнеева, С. Д. Поляков, Д. В. Николаев // Лечебная физкультура и спортивная медицина. 2012. № 10 (106). С. 30–36.

УДК 616.15-073.584:616.831-005.1

МОРФОСТРУКТУРНЫЙ И ЛАЗЕРНЫЙ АТОМНО-ЭМИССИОННЫЙ СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗ ЛОКАЛЬНОГО РАСПРЕДЕЛЕНИЯ КАЛЬЦИЯ В ОБРАЗЦАХ КРОВИ, ВЫСОХШИХ НА ТВЕРДОЙ ПОВЕРХНОСТИ, ПАЦИЕНТОВ С ДИАГНОЗОМ ИНСУЛЬТ

Зажогин А. П.¹, Трущенко М. Н.², Булойчик Ж. И.¹, Нечипуренко Н. И.², Танин А. Л.²

¹Учреждение образования «Белорусский государственный университет» ²Государственное учреждение «Республиканский научно-практический центр неврологии и нейрохирургии» г. Минск, Республика Беларусь

В последние годы анализ биологических объектов стал одной из основных областей применения инструментальных, в том числе и спектральных методов анализа. Такие исследования актуальны при диагностике врожденных патологий, экологически обусловленных заболеваний, профессиональных заболеваний, связанных со спецификой промышленного производства, и др.

Патологическое состояние организма тесно связано с изменениями содержания химических элементов в биологических жидкостях (БЖ). Известно огромное влияние макроэлементов (кальций, калий, натрий, магний и др.) и микроэлементов (цинк, медь, железо, алюминий и др.) на функционирование организма и состояние здоровья. В связи с этим особое значение приобретает разработка методов ранней диагностики нарушений накопления и распределения некоторых химических элементов и белков в БЖ человека.

Относительно недавно в медицинской диагностике нашел применение метод клиновидной дегидратации [1–3]. Метод позволяет на основании визуального анализа структур, образовавшихся при высыхании капли БЖ, выявлять различные заболевания человека на доклинической стадии. Исследования ведутся по качественным особенностям на феноменологическом уровне. Хотя проблема и требует более глубокого изучения, выявленные эмпирические закономерности активно используются в медицинской практике.

Тем не менее, как отмечается в работе [3], остается ряд проблем в практическом применении морфологии твердой фазы БЖ. В первую очередь это касается перевода данных методов из теоретических в практическую деятельность медицины. Весомым минусом методов является недостаточная обоснованность механизмов дегидрационной самоорганизации БЖ. Ведь в данном случае особо ценным является не феноменологическое описание типа «вид патологии — наблюдаемые структуры», а анализ обменных процессов, обуславливающих особенности механизмов формирования структуры твердой фазы БЖ.

Механизмы переноса коллоидных частиц в высыхающих каплях в настоящее время достаточно хорошо изучены как теоретически, так и экспериментально. Однако влияние диффузии на перемещение внутри капли молекул малого размера (соли) изучено еще недостаточно. На настоящий момент