зали высокий уровень готовности к школе. Исследования психоэмоционального состояния, эмоционально-личностной сферы по методикам «Бусы», «Кактус», «Красивый рисунок» в интегрированных классах выявили наличие у детей таких качеств как лабильность нервной системы, импульсивность, тревожность, интравертность, агрессивность, демонстративность, депрессия, иногда конфликтность, эмоциональная напряженность. В гимназии преобладали лабильность, уравновешенность, тревожность, благоприятное эмоциональное состояние. В общеобразовательном классе превалировала уравновешенность, благоприятное эмоциональное состояние.

ЛИТЕРАТУРА

- 1. Кодекс об Образовании РБ 243-3 от 13.01.2011 г. Ст. 267.
- 2. Швед, М. В. Интегрированное обучение детей с особенностями психофизического развития: хрестоматия / М. В. Швед. Витебск: УО «ВГУ им. П. М. Машерова», 2007. С. 157.
- 3. Приказ МО РБ / Концепция развития инклюзивного образования лиц с особенностями психофизического развития в Республике Беларусь / 22.07.2015 № 608. Минск, 2015. С. 17.
- 4. Сбор, обработка и порядок представления информации для гигиенической диагностики и прогнозирования здоровья детей в системе «Здоровье среда обитания» / Инструкция 2.4.2.11-14-26-2003 утвер. 03.12.2003 № 152. Минск, 2003. С. 38.

УДК 616.613-002:615.281]:579 АССОЦИИРОВАННАЯ АНТИБИОТИКОРЕЗИСТЕНТНОСТЬ ВОЗБУДИТЕЛЕЙ ПИЕЛОНЕФРИТОВ

Лагун Л. В.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Пиелонефрит является самым частым заболеванием почек и одной из распространенных болезней инфекционного генеза. Основным этиологическим фактором пиелонефрита являются бактерии, микоплазмы, вирусы, реже — грибы [1]. В условиях лечебно-профилактических организаций клинические значимые микроорганизмы подвергаются селективному давлению антибактериальных лекарственных средств и их геномы вынуждены адаптироваться к новым условиям существования. Распространенность антибактериальной устойчивости микроорганизмов, выделенных у пациентов с острыми и хроническими пиелонефритами, постепенно увеличивается [2]. Среди многих аспектов оптимальной стратегии борьбы с антибиотикорезистентностью важное значение имеет отслеживание фенотипов антибиотикорезистентности клинических изолятов, анализ ассоциированной антибиотикорезистентности, что впоследствии определяет тактику рациональной и эффективной антибиотикотерапии различных инфекций, в том числе и инфекций мочевыводящих путей [3].

Цель

Провести анализ ассоциированной антибиотикорезистентности возбудителей пиелонефритов. *Материал и методы исследования*

В исследование включено 70 штаммов *E. coli*, 35 штаммов *Proteus spp.*, 10 штаммов *K. pneumoniae*, выделенных из мочи пациентов с острыми и хроническими пиелонефритами, находившихся на лечении в урологическом и детском нефрологическом отделениях Гомельской областной клинической больницы. Чувствительность к антибактериальным препаратам (ампициллину, амоксициллину/клавуланату, имипенему, цефотаксиму, цефтазидиму, цефепиму, ципрофлоксацину, гентамицину, хлорамфениколу) определяли диско-диффузионным методом на среде Мюллер-Хинтон (HiMedia Laboratories Pvt. Limited, Индия). Для контроля качества определения антибиотикочувствительности использовался референсный штамм *E. coli* ATCC 25922. Параллельно с тестированием клинических изолятов проводили тестирование контрольного штамма. При характеристике микроорганизмов использовали общепринятые показатели — чувствительные, умеренно резистентные и резистентные.

Результаты исследования и их обсуждение

На основе полученных показателей проанализирована ассоциированная резистентность исследуемых штаммов $E.\ coli,\ Proteus\ spp.\$ и $K.\ pneumoniae$ к антибактериальным препаратам. Сводные данные об ассоциированной (перекрестной) резистентости штаммов $E.\ coli$ представлены в таблице 1.

Таблица 1 — Перекрестная устойчивость штаммов $E.\ coli\ (n=70)$ к антибактериальным препаратам

Антибиотики,	Количество Антибиотики, к которым имеется перекрестная устойчивость									
к которым имеется	резистентных	Amp,	Amc,	Cft,	Caz,	Cfp,	Imp,	Cpf,	Gen,	Chl,
устойчивость	штаммов	%	%	%	%	%	%	%	%	%
Amp	58		29	43	50	41	2	22	36	74
Amc	17	100	_	41	29	41	0	29	53	76
Cft	26	96	27	_	65	65	0	38	46	88
Caz	31	93	16	55		61	3	26	42	81
Cfp	27	89	26	63	70		4	41	67	78
Imp	1	100	0	0	100	100		0	100	100
Cpf	13	100	38	77	61	85	0		69	85
Gen	23	91	39	52	57	78	4	39	_	74
Chl	46	93	28	50	57	46	2	24	37	

Примечание. Amp — ампициллин; Amc — амоксиклав; Cft — цефотаксим; Caz — цефтазидим; Cfp — цефепим; Imp — имипенем; Cpf — ципрофлоксацин; Gen — гентамицин; Chl — хлорамфеникол.

В отношении цефтазидиморезистентных штаммов $E.\ coli$ наибольшей активностью обладали имипенем, к которому устойчивы были 3,2 % изолятов, амоксиклав (16,1 %) и ципрофлоксацин (25,8 %). Перекрестной устойчивостью к цефотаксиму и цефтазидиму обладали 17 штаммов $E.\ coli$. Так, из 15 штаммов, резистентных к цефотаксиму, 9 (60 %) обладали резистентностью к цефтазидиму, 2 (13,3 %) были умеренно резистентны. Из 11 штаммов $E.\ coli$, обладавших умеренной резистентностью к цефотаксиму, 5 (45,5 %) штаммов были резистентны, 1 (9,1 %) штамм был умеренно резистентен к цефтазидиму, остальные были к нему чувствительны.

Среди 27 штаммов $E.\ coli$, резистентных к цефепиму, выявлено 63 % цефотаксиморезистентных и 70,4 % цефтазидиморезистентных штаммов. В отношении цефотаксиморезистентных штаммов наибольшей активностью обладал имипенем, к которому чувствительны были все изоляты.

Все штаммы $E.\ coli$, нечувствительные к имипенему, были резистентны к ампициллину, цефтазидиму, цефепиму, гентамицину, хлорамфениколу.

В отношении хлорамфениколорезистентных штаммов наибольшей активностью обладали имипенем, к которому были устойчивы 2,2 % изолятов, и ципрофлоксацин (23,9 %). В отношении гентамицинорезистентных штаммов E. coli наибольшей активностью обладал имипенем, к нему были устойчивы 4,3 % изолятов.

Сводные данные об ассоциированной резистентости штаммов *Proteus spp*. представлены в таблице 2.

Таблица 2 — Перекрестная устойчивость штаммов $Proteus\ spp.\ (n=35)\ \kappa$ антибактериальным препаратам

Антибиотики,	Количество	Антибиотики, к которым имеется перекрестная устойчивость									
к которым имеется	резистентных	Amp,	Amc,	Cft,	Caz,	Cfp,	Imp,	Cpf,	Gen,	Chl,	
устойчивость	штаммов	%	%	%	%	%	%	%	%	%	
Amp	25		36	40	36	20	0	16	40	64	
Amc	9	100		78	67	11	0	11	56	56	
Cft	10	100	70	_	60	30	0	10	50	70	
Caz	9	100	67	67		33	0	22	67	89	
Cfp	5	100	80	60	60		0	60	60	80	
Imp	0	0	0	0	0	0		0	0	0	
Cpf	5	80	20	20	40	60	0		80	80	
Gen	16	62	31	31	37	19	0	25		69	
Chl	20	80	25	35	40	20	0	20	55		

Примечание. Amp — ампициллин; Amc — амоксиклав; Cft — цефотаксим; Caz — цефтазидим; Cfp — цефепим; Imp — имипенем; Cpf — ципрофлоксацин; Gen — гентамицин; Chl — хлорамфеникол.

Резистентные к цефотаксиму штаммы $Proteus\ spp$. были наиболее чувствительны к имипенему (0 %) и ципрофлоксацину (10 %). Перекрестной устойчивостью к цефотаксиму и цефепиму обладали 3 штамма $Proteus\ spp$. Так, 2 (66,7 %) изолята, умеренно резистентные к цефотаксиму, были резистентны к цефепиму. А 1 (33,3 %) штамм $Proteus\ spp$., резистентный к цефотаксиму, обладал резистентностью и к цефепиму.

В отношении гентамицинорезистентных штаммов $Proteus\ spp$. наибольшей активностью обладали имипенем, к которому чувствительны были все изоляты, цефепим, резистентность к которому составила 18,8 % случаев, и ципрофлоксацин (25 %). В отношении хлорамфени-колорезистентных штаммов наибольшей активностью обладали имипенем, к которому чувствительны были все изоляты, ципрофлоксацин, устойчивость к которому проявляли 20 % изолятов, и цефепим (20 %).

Сводные данные об ассоциированной резистентости штаммов K. pneumoniae представлены в таблице 3.

Таблица 3 — Перекрестная устойчивость штаммов K. pneumoniae (n = 10) κ антибактериальным препаратам

Антибиотики,	Количество	Антибиотики, к которым имеется перекрестная устойчивость									
к которым имеется	резистентных	Amp,	Amc,	Cft,	Caz,	Cfp,	Imp,	Cpf,	Gen,	Chl,	
устойчивость	штаммов	%	%	%	%	0/0	%	%	%	%	
Amp	9	_	33	22	33	22	11	11	44	67	
Amc	3	100		67	33	67	33	33	67	67	
Cft	3	67	67		33	33	0	0	33	100	
Caz	3	100	33	33	_	0	0	0	67	100	
Cfp	2	100	100	50	0		50	50	50	50	
Imp	1	100	100	0	0	100		100	100	0	
Cpf	1	100	100	0	0	100	100		100	0	
Gen	4	100	50	25	50	25	25	25	_	75	
Chl	7	86	29	43	43	14	0	0	43		

Примечание. Amp — ампициллин; Amc — амоксиклав; Cft — цефотаксим; Caz — цефтазидим; Cfp — цефепим; Imp — имипенем; Cpf — ципрофлоксацин; Gen — гентамицин; Chl — хлорамфеникол.

Все штаммы *К. pneumoniae*, резистентные к ципрофлоксацину, были устойчивы к ампициллину, амоксиклаву, цефепиму, имипенему и гентамицину.

Перекрестной устойчивостью к цефотаксиму и цефтазидиму обладал 1 штамм *К. рпеитопіае*; к обоим препаратам изолят был резистентен. Все штаммы *К. рпеитопіае*, резистентные к цефтазидиму, обладали чувствительностью к цефепиму, имипенему и ципрофлоксацину. Перекрестной устойчивостью к цефепиму и цефотаксиму обладал 1 штамм *К. рпеитопіае*. Так, этот штамм был умеренно резистентен к цефепиму и резистентен к цефотаксиму.

Все изоляты *К. рпеитопіае*, устойчивые к ципрофлоксацину и имипенему, были чувствительны к цефотаксиму, цефтазидиму и хлорамфениколу.

Все штаммы *К. pneumoniae*, устойчивые к имипенему, были резистентны к ампициллину, амоксиклаву, цефепиму, ципрофлоксацину, гентамицину.

Все штаммы, резистентные к хлорамфениколу, были чувствительны к имипенему и ципрофлоксацину.

Выводы

Учитывая проведенный анализ, имеется проблема резистентности возбудителей пиелонефритов к антибактериальным препаратам, которая усугубляется ассоциированной антибиотикорезистентностью выделенных клинических изолятов. Исследование формирования резистентности к антибиотикам необходимо для осуществления эффективного эпидемиологического надзора за распространением и циркуляцией полирезистентных штаммов.

ЛИТЕРАТУРА

- 1. *Шилов*, Е. М. Нефрология / Е. М. Шилов. М.: ГЭОТАР-Медиа, 2007. 267 с.
- 2. Современное состояние антибиотикорезистентности основных возбудителей пиелонефрита / С. К. Яровой [и др.] // Урология. 2010. № 2. —С. 21–27.
- 3. *Титов*, Л. П. Современные подходы к организации инфекционного контроля и микробиологического мониторинга антибиотикорезистентности микроорганизмов / Л. П. Титов, В. А. Горбунов, Т. С. Ермакова // Информационные материалы. Вып. 2. Минск, 2003. 18 с.