теста и количество ошибок в 1,2 (P < 0.05), 1,4 (P < 0.05), 1,1 (P < 0.05) и 1,2 раза выше, чем лиц контрольной группы соответственно.

Результаты оценки состояния сердечно-сосудистой системы по показателям артериального давления и частоты сердечных сокращений свидетельствуют о более выраженном изменении ее функционального состояния у машинистов и помощников машинистов тепловозов, электровозов и водителей грузовых автомобилей, что проявлялось в изменения частоты пульса по типу тахикардии в 1,2 раза выше (P < 0.05), в сравнении с контрольной группой и изменении систолического в 1,2 раза (P < 0.05) и диастолического в 1,3 (P < 0.05) раза артериального давления гипертоническому типу в сравнении с контрольной группой.

По данным аудиометрии комплексное воздействие шума, вибрации и инфразвука на работающих 1-й и 2-й групп выражается в утомлении слуха с признаками неблагоприятного воздействия на орган слуха и проявляется выраженным увеличением порога слуховой чувствительности. Сопоставление результатов исследований 1, 2 групп с контрольной показывает, что во всех группах наблюдалось повышение слуховых порогов, в особенности в речевом диапазоне частот. У работающих 1 и 2 групп зарегистрированы более выраженными изменениями уровней порога слуха в аудиометрическом диапазоне частот по сравнению с контрольной группой, что говорит о несомненном влиянии исследуемых факторов на орган слуха.

Наибольшие сдвиги порога слуха в течение рабочей смены наблюдались в диапазоне частот 2000–6000 Гц у исследуемых 1-й и 2-й групп по сравнению с 3-й группой и составили от 4 до 7 дБ.

На аудиометрических частотах $125-500~\Gamma$ ц, в 2-х группах также было выявлено увеличение порога слуха, но оно носило незначительный характер (1-3~дБ как в 1-й, так и во 2-й группе) и не носило статистически достоверный характер.

Достоверных клинико-физиологических различий при оценке вестибулярного анализатора статистически достоверных различий у лиц 1, 2 и контрольной групп не выявлено.

Заключение

Проведенные гигиенические и физиолого-гигиенические исследования показали, что в течение рабочей смены на рабочих местах водителей грузового автотранспорта и локомотивных бригад в кабинах тяговых машин подвижного состава железнодорожного транспорта наблюдаются значительные превышения гигиенических нормативов по шуму, вибрации и инфразвуку. Наличие высоких уровней обусловлено техническими и динамическими характеристиками транспортных средств (крупные габариты, наличие массивных движущихся деталей в узлах и механизмах, высокая мощность силовых установок, скорость движения), особенностями технологических циклов и условиями эксплуатации.

Результаты проведенных физиолого-гигиенических исследований свидетельствуют о неблагоприятном влиянии вибрации, шума и инфразвука на организм работающих на железнодорожном транспорте и грузовом автотранспорте, что проявляется более выраженными изменениями функциональных показателей центральной нервной и сердечно-сосудистой систем организма, а также увеличением порога слуховой чувствительности при длительном комбинированном воздействии шума и вибрации у машинистов, помощников машинистов тепловозов, электровозов и водителей грузовых автомобилей.

ЛИТЕРАТУРА

- 1. Измеров, Н. Ф. Профессиональная патология / под ред. Н. Ф. Измерова: Национальное руководство. М.: ГЭОТАР-Медиа, 2011. 784 с.
- 2. Артамонова, В. Г. Профессиональные болезни / В. Г. Артамонова, Н. Н. Шаталов. М.: Медицина, 1996. 431 с.
- 3. *Кузнецова, С. В.* Донозологические дезадаптационные психические расстройства у лиц, подвергавшихся воздействию шума и вибрации: дис ... канд. мед. наук / С. В. Кузнецова; Каз.гос. мед. ун-т. Казань, 1998. 169 с.
 - 4. Глянц, С. Медико-биологическая статистика / С. Глянц; пер. с англ. М.: Практика, 1998. 459 с.
- 5. Гигиенические методы исследования физических факторов окружающей среды: метод. материалы / под ред. акад. АМН СССР А. П. Шицковой. М., 1990. 116 с.

УДК 578.347+577.18:616-022.7

ЭФФЕКТИВНОСТЬ БАКТЕРИОФАГОВ И КОМБИНАЦИЙ АНТИБИОТИКОВ В ОТНОШЕНИИ ПОЛИАНТИБИОТИКОРЕЗИСТЕНТНЫХ ШТАММОВ СИНЕГНОЙНОЙ ПАЛОЧКИ

Тапальский Д. В., Осипов В. А., Важинская В. В., Прядко А. О.

Учреждение образования «Гомельский государственный медицинский университет» г. Гомель, Республика Беларусь

Введение

Синегнойная палочка является одним из наиболее распространенных возбудителей инфекций, связанных с оказанием медицинской помощи. Последние годы характеризовались увеличением ус-

тойчивости *P. aeruginosa* практически ко всем антибактериальным препаратам. Особую эпидемиологическую значимость имеет устойчивость синегнойной палочки к карбапенемам, обусловленная продукцией метало-β-лактамаз (МБЛ). Сцепление генов МБЛ с другими детерминантами резистентности приводит к развитию экстремальной антибиотикорезистентности. Отдельные эпидемиологически значимые клоны экстремально-антибиотикорезистентных МБЛ-продуцентов способны быстро распространяться на обширных территориях и вызывать серьезные инфекции, трудно поддающиеся терапии [1]. Колистин (полимиксин E) часто является единственным антибиотиком резерва, эффективным в отношении экстремально-антибиотикорезистентных штаммов синегнойной палочки. Имеется ряд сообщений о панрезистентных штаммах *P. aeruginosa*, устойчивых к колистину, описаны вспышки нозокомиальных инфекций в отделениях реанимации и интенсивной терапии, вызванные такими штаммами.

Таким образом, стремительное распространение разнообразных механизмов устойчивости к антибактериальным препаратам среди *P. aeruginosa* требует поиска альтернативных стратегий этиотропной терапии, способных оказывать эффективное воздействие на экстремально-антибиотикорезистентные и панрезистентные штаммы. Перспективным направлением антибактериальной терапии бактериальных инфекций, вызванных антибиотикорезистентными грамотрицательными возбудителями, является использование комбинаций антибиотиков. Описаны различные комбинации антибиотиков, *in vitro* обладающие синергическим действием в отношении как антибиотикочувствительных, так и экстремально-антибиотикорезистентных штаммов *P. aeruginosa* [3].

Микробиологическая эффективность комбинаций антибиотиков трудно прогнозируема в связи с возможным присутствием у микроорганизма разнообразных механизмов резистентности даже к препаратам из одной группы. Поэтому для подбора эффективных комбинаций антибиотиков требуется проводить микробиологическое тестирование изолятов, выделенных от конкретного больного.

Среди альтернативных антимикробных препаратов, эффективных в отношении антибиотикорезистентных возбудителей, особый интерес вызывают бактериофаги. Клиническая практика показала эффективность использования бактериофагов при инфекционных заболеваниях желудочно-кишечного тракта, воспалительных заболеваниях пазух носа, ротовой полости, верхних дыхательных путей, мочеполовой системы. Специфичность и узкий спектр активности бактериофагов позволяет избежать характерных для антибиотиков осложнений, связанных с воздействием на нормальную микрофлору. Узкий спектр антибактериальной активности отдельных бактериофагов можно компенсировать путем использования комбинаций из нескольких фагов с различными спектрами активности [2].

Отдельной проблемой является устойчивость бактерий к фагам, которая может быть как первичной, связанной с отсутствием специфических рецепторов для бактериофагов на поверхности микробной клетки, так и вторичной, приобретенной. Распространение вторичной фагорезистентности в бактериальных популяциях способно существенно снизить эффективность фаготерапии с использованием имеющихся коммерчески доступных препаратов бактериофагов, решением проблемы может стать поиск активных литических фагов во внешней среде с целью их дальнейшего введения в состав препаратов для фаготерапии.

Пель

Обнаружение бактериофагов и комбинаций антибиотиков, эффективных в отношении экстремально-антибиотикорезистентных изолятов *P. aeruginosa*.

Материал и методы исследования

В исследование включены 53 неповторяющихся клинических изолята синегнойной палочки, 37 из них выделенных в лечебных учреждениях Республики Беларусь (Минск — 10 изолятов, Гомель — 6 изолятов, Могилев — 21 изолят), 16 изолятов — из коллекции НИИ антимикробной терапии, г. Смоленск (Москва — 3 изолята; Воронеж, Казань, Краснодар, Липецк, Н. Новгород, Новосибирск, Омск, Пермь, Смоленск, Тольятти, Тюмень, Челябинск, Якутск — по 1 изоляту).

Все отобранные изоляты являлись экстремально-антибиотикорезистентными: 39 (73,6 %) изолятов были устойчивыми ко всем антисинегнойным антибактериальным препаратам, за исключением полимиксинов, 14 (26,4 %) изолятов сохраняли чувствительность к полимиксинам и азтреонаму. Устойчивость к карбапенемам у всех отобранных в исследование изолятов была детерминирована продукцией МБЛ VIM или IMP-типов. Продукция МБЛ выявлена с использованием метод двойных дисков с ЭДТА, наличие генов МБЛ подтверждено с помощью метода ПЦР в реальном времени.

В исследование включены препараты бактериофагов производства НПО «Микроген»: «Бактериофаг синегнойный» (г. Пермь), «Бактериофаг синегнойный» (г. Н. Новгород), «Секстфаг» (г. Пермь), «Пиобактериофаг поливалентный очищенный» (г. Уфа). Определение диапазона действия бактериофагов в отношении клинических изолятов микроорганизмов проводился капельным методом (спот-тест), учет степени лизиса выполняли по четырехкрестной системе. Результаты от 3+ до 4+ учитывали как положительные реакции. Исследование проводили в трех повторах.

Для обнаружения бактериофагов, активных в отношении экстремально-антибиотикорезистентных изолятов *P. aeruginosa*, проведен отбор проб речной воды (р. Сож, р. Днепр, р. Березина, р. Свислочь). Вода отбиралась в стерильные стеклянные флаконы в объеме 500 мл. Для проведения исследования 100 мл воды смешивали со 100 мл триптиказо-соевого бульона (ВD, США) двойной концентрации (60 г дегидратированной среды на 1 л воды). Для тестирования использовали культуры, устойчивые к препаратам бактериофагов производства ФГУП «НПО «Микроген». Из суточных культур готовили бактериальные суспензии с оптической плотностью 3,0 по МакФарланду. Во флаконы со смесью из образца воды и питательной среды вносили бактериальные суспензии до конечной концентрации 5 × 10⁶ микробных клеток/мл. Инкубацию проводили в течение 48 ч в шейкере-инкубаторе при 35 °С. Бульонные культуры переносили в стерильные 50 мл полипропиленовые пробирки (Sarstedt, Германия) и центрифугировали для осаждения микробных клеток. Супернатант фильтровали через фильтры Filtropur S 0,45 (Sarstedt, Германия). Спектр активности полученных фаголизатов определяли в спот-тесте.

Микробиологическая эффективность комбинаций из двух антибиотиков определена модифицированным методом Е-тестов (кросс-тест). Предварительно проводилось определение минимальных подавляющих концентраций (МПК) меропенема, имипенема, цефтазидима, азтреонама, амикацина, левофлоксацина и колистина методом градиентной диффузии с использованием Е-тестов (Віотегіецх, Франция).

Рассчитывали фракционные подавляющие концентрации (ФПК) для каждого из препаратов в комбинации:

$$\begin{split} \Phi\Pi K_{A} &= M\Pi K_{AB} \ / \ M\Pi K_{A} \\ \Phi\Pi K_{B} &= M\Pi K_{BA} \ / \ M\Pi K_{B} \end{split}$$

где МПК $_{AB}$ — минимальная подавляющая концентрация препарата A в присутствии препарата B, МПК $_{A}$ — минимальная подавляющая концентрация препарата A без добавления второго препарата. Индекс ФПК рассчитывался как сумма ФПК каждого из препаратов в комбинации:

$$\Sigma \Phi \Pi K = \Phi \Pi K_A + \Phi \Pi K_B$$

При $\Sigma \Phi \Pi K \leq 0,5$ эффект комбинации антибиотиков оценивался как синергический, при $0,5 < \Sigma \Phi \Pi K \leq 1$ — как аддитивный, при $1 < \Sigma \Phi \Pi K \leq 4$ — как нейтральный.

Результаты исследования и их обсуждение

Результаты определения литической активности бактериофагов в отношении клинических изолятов МБЛ-продуцирующих *P. aeruginosa* представлены в таблице 1.

Таблица 1 — Спектр литической активности препаратов бактериофагов в отношении *P. aeruginosa*

	Бактериофаг синегнойный		Бактериофаг синегнойный		Секстафаг		Пиобактериофаг	
	(г. Пермь)		(г. Н. Новгород)		(г. Пермь)		(г. Уфа)	
	n	%	n	%	n	%	n	%
«4+»	3	5,7	3	5,7	2	3,8	1	1,9
«3+»	14	26,4	8	15,1	14	26,4	8	15,1
«2+»	10	18,9	8	15,1	11	20,8	7	13,2
«1+»	11	20,8	8	15,1	6	11,3	7	13,2
«+/-»	2	3,8	6	11,3	3	5,7	5	9,4
«-»	13	24,5	20	37,7	17	32,1	25	47,2
Всего чувствительных («4+», «3+»)	17	32,1	11	20,8	16	30,2	9	17,0

В целом отмечен невысокий уровень активности коммерчески доступных препаратов. Так, достаточный уровень литической активности («3+» или «4+») препарата «Бактериофаг псевдомонас аеругиноза (синегнойный)», г. Пермь, определен только для 32,1 % изолятов синегнойной палочки. Сходный уровень активности отмечен для препарата «Секстафаг», г. Пермь. Другие препараты, потенциально эффективные против *P. aeruginosa*, лизировали с достаточной активностью меньшее количество изолятов.

Из речной воды выделены бактериофаги, активные в отношении полиантибиотикорезистентных карбапенемрезистентных изолятов *P. aeruginosa*, устойчивых к действию препаратов бактериофагов про-изводства ФГУП «НПО «Микроген». Наиболее широким спектром литической активности обладал бактериофаг P-33, который с интенсивностью не менее «3+» лизировал 31 (58,5 %) изолят *P. aeruginosa*, в том числе 17 (32,1 %) изолятов, которые не лизировались ни одним из коммерчески доступных препаратов.

Оценка эффективности комбинаций антибиотиков проведено для 8 карбапенеморезистентных изолятов *P. aeruginosa*, выделенных в лечебных учреждениях Республики Беларусь (Гомель, Минск,

Могилев) и Российской Федерации (Москва, Казань, Новосибирск, Якутск). Все изоляты имели генную кассету bla_{VIM-2} , кодирующую МБЛ VIM-2, и принадлежали к ST235.

В соответствии с критериями EUCAST, все изоляты сохраняли чувствительность только к колистину (МПК 0,094–1,0 мкг/мл). МПК карбапенемов и левофлоксацина для всех изолятов в восемь и более раз превышали пограничные ФК/ФД концентрации (EUCAST v.4.0), поэтому их дальнейшее тестирование в комбинациях не проводилось. Для всех комбинаций с включением колистина (колистин + азтреонам, колистин + цефтазидим, колистин + амикацин) отмечен нейтральный эффект (Σ ФПК от 1,18 до 2,0). Комбинация азтреонам + амикацин оказывала аддитивный эффект на два изолята (Σ ФПК 0,875 и 1,0), комбинация цефтазидим + амикацин — на три (Σ ФПК 0,56; 0,875; 1,0), для остальных изолятов эффект данных комбинаций нейтральный. Однако МПК амикацина у изолятов, для которых в комбинациях был достигнут аддитивный эффект, в 3–8 раз превышала пограничные ФК/ФД концентрации. Высокие значения МПК карбапенемов и фторхинолонов, многократно превышающие их пороговые ФК/ФД концентрации, не позволяет рекомендовать эти препараты для включение в схемы комбинированной антибактериальной терапии инфекций, вызванных устойчивыми к ним МБЛ-продуцирующими штаммами.

Заключение

Выявлены высокие уровни резистентности МБЛ-продуцирующих изолятов P. aeruginosa с многократным превышением пороговых $\Phi K/\Phi Д$ -концентраций для бета-лактамов, аминогликозидов и фторхинолонов. Все протестированные комбинации на основе колистина не проявляли синергического эффекта. Обнаруженные комбинации с аддитивным эффектом на основе амикацина не имеют потенциала для клинического использования в связи с высокими значениями МПК, многократно превышающими пороговые $\Phi K/\Phi Д$ концентрации. Показана недостаточная активность коммерчески доступных препаратов бактериофагов в отношении экстремально-антибиотикорезистентных изолятов P. A0 гостав препаратов новых литических синегнойных бактериофагов, выделенных из внешней среды.

ЛИТЕРАТУРА

- 1. Клональное распространение штаммов Pseudomonas aeruginosa продуцентов металло-бета-лактамаз на территории Беларуси / В. А. Осипов [и др.] // Иммунопатология, аллергология, инфектология. 2012. № 4. С. 92–97.
- 2. Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages / J. Larche [et al.] // Antimicrobial Agents and Chemotherapy. 2012. Vol. 56. P. 6175–6180.
- 3. Zavascki, A. P. Combination therapy for carbapenem-resistant Gram-negative bacteria / A. P. Zavascki, J. B. Bulitta, C. B. Landersdorfer // Expert Review of Anti-infective Therapy. 2013. Vol. 11. P. 1333–1353.

УДК 616.3-006.6-089

ОПЫТ ПРИМЕНЕНИЯ СТЕНТИРОВАНИЯ ПИЩЕВОДА В ГОМЕЛЬСКОМ ОБЛАСТНОМ КЛИНИЧЕСКОМ ОНКОЛОГИЧЕСКОМ ДИСПАНСЕРЕ

Терешко А. В.¹, Нагла Ю. В.¹, Тихманович Е. Е.¹, Похожай В. В.²

¹Учреждение

«Гомельский областной клинический онкологический диспансер»
²Учреждение образования
«Гомельский государственный медицинский университет»
г. Гомель, Республика Беларусь

Рак пищевода является одним наиболее часто встречающихся заболеваний пищевода. Основным методом лечения рака является экстирпация пищевода с лимфодиссекцией и эзофагопластикой. У части пациентов распространенность опухолевого процесса исключает возможность выполнения радикального вмешательства. Главной задачей в этой ситуации является обеспечение перорального питания. В настоящее время предпочтение отдается эндоскопическим методикам. Эти методы — альтернатива гастро- или энтеростомии, которая негативно отражается как на состоянии пациента, так и на его качестве жизни.

Так же в случаях осложненного послеоперационного периода, как правило, при несостоятельности пищеводно-желудочного анастомоза, применяется пищеводное стентирование, как альтернатива глубоко инвалидизирующих, разобщающих операций, с наложением гастро-, и эзофагостом.

Среди эндоскопических методов для обеспечения проходимости пищевода применяются расширение суженного участка пищевода (бужирование), стентирование пищевода и реканализация (уменьшение опухоли в просвете пищевода).