ДИНАМИКА СООТНОШЕНИЯ ДОЗ ВНЕШНЕГО И ВНУТРЕННЕГО ОБЛУЧЕНИЯ ЖИТЕЛЕЙ НАСЕЛЕННЫХ ПУНКТОВ, НАХОДЯЩИХСЯ НА ТЕРРИТОРИЯХ С РАЗЛИЧНОЙ ПЛОТНОСТЬЮ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ

1 ГУ «РНЦ радиационной медицины и экологии человека», г. Гомель, Беларусь
2 УО «Гомельский государственный медицинский университет», г. Гомель, Беларусь

Для принятия решений о введении противорадиационных мер по снижению доз облучения населения и выявления наиболее облучаемых групп населения с целью оказания им адресной медицинской помощи необходима оценка доз облучения.

Доза облучения, которая может быть сформирована у человека, представляет собой сумму доз внешнего и внутреннего облучения. Доза внешнего облучения пропорциональна плотности загрязнения территории населенного пункта. Для дозы внутреннего облучения характерен большой разброс индивидуальных значений среди жителей в пределах одного населенного пункта, а также еще большая вариация значений среднегодовой дозы внутреннего облучения между жителями населенных пунктов, отличающихся разнообразными условиями формирования дозы облучения.

В целом, по всей территории радиоактивного загрязнения, в связи с распадом 137Cs и снижением плотности загрязнения наблюдается уменьшение дозы внешнего облучения, чего нельзя сказать о дозе внутреннего облучения: прослеживается практически стабильность во времени средних значений дозы внутреннего облучения, что в принципе характерно для отдалённого периода аварии.

Ключевые слова: доза внутреннего облучения, доза внешнего облучения, населенный пункт, плотность загрязнения

Введение

В отдалённом периоде после крупной радиационной аварии такой, как авария на Чернобыльской АЭС, одной из актуальных проблем, определяющей адекватность решений по обеспечению радиационной безопасности человека является корректная оценка доз облучения населения, проживающего на загрязнённых радионуклидами территориях.

Доза облучения, которая может быть сформирована у человека, представляет собой сумму доз внешнего и внутреннего облучения.

Доза внешнего облучения пропорциональна плотности загрязнения территории населенного пункта. В отдалённом периоде после аварии на ЧАЭС радиационная обстановка практически полностью определяется радионуклидом 137Cs. С течением времени в связи с распадом 137Cs происходит естественное уменьшение плотности загрязнения территории.

Доза внутреннего облучения отличается более сложным в прогнозе характером. Для нее характерен большой разброс индивидуальных значений среди жителей в пределах одного населенного пункта, а также еще большая вариация значений среднегодовой дозы внутреннего облучения между жителями населенных пунктов, отличающихся разнообразными условиями формирования дозы облучения.

Цель исследования: анализ динамики соотношения доз внешнего и внутреннего облучения жителей населенных пунктов, находящихся на территории с различной плотностью радиоактивного загрязнения, за период с 1992 по 2015 гг.
Материал и методы исследования

Материалами для проведения исследования являлись:

- данные Государственного дозиметрического регистра о дозах внутреннего облучения, рассчитанных по результатам СИЧ-измерений жителей Гомельской области за период 2013-2015 гг.;
- официальные данные Департамента по гидрометеорологии Министерства природных ресурсов о средней плотности загрязнения территории населенного пункта и его ареала 137Cs на 2015 год;
- данные по типу населенного пункта, в котором постоянно проживает население;
- результаты индивидуального дозиметрического контроля, полученные методом термолюминесцентной дозиметрии сотрудниками Гомельского областного центра гигиены, эпидемиологии и общественного здоровья за 1991-2008 гг.;

Статистическая обработка данных проводилась с использованием пакета программ статистического анализа STATISTICA 8.0 и MS EXCEL 2010.

Результаты исследования

В качестве методической основы для оценки средних годовых эффективных доз внешнего и внутреннего облучения жителей населенных пунктов, расположенных на загрязненных радионуклидами территориях, использована инструкция по применению «Метод оценки средней годовой эффективной дозы облучения жителей населенных пунктов, расположенных на территориях, загрязненных радионуклидами в результате аварии на Чернобыльской АЭС» (регистрационный № 094-0914) [1].

Наиболее корректным методом оценки средней годовой дозы внешнего облучения в населенных пунктах различного типа является метод индивидуального дозиметрического контроля с помощью термолюминесцентной дозиметрии, который стали применять в Беларуси и России, начиная с 1991 года. Но поскольку в отдаленном периоде после аварии этот метод целесообразно применять только на территории с плотностью загрязнения цезием более 444 кБк/м² [2], а таких населенных пунктов немного, менее 20, для оценки средней годовой эффективной дозы внешнего облучения применяли метод экстраполяции данных эмпирически полученного коэффициента связи дозы внешнего облучения с плотностью загрязнения территории по результатам ГЛДИ-измерений за период 1991-2008 гг. Значение коэффициента связи дозы внешнего облучения с плотностью загрязнения территории получены для населенных пунктов различного типа (село, городской поселок, город) на период до 2015 г.

Расчет средних годовых эффективных доз внешнего облучения проводили по наиболее облучаемой группе жителей населенного пункта.

Как показали исследования, выполненные ранее, основное влияние на формирование дозы внутреннего облучения жителей сельских населенных пунктов, находящихся на загрязненных территориях, оказывают свойства почв, географические, демографические и социально-экономические особенности населенного пункта [3].

Один из важных факторов формирования дозы облучения — тип почвы сельскохозяйственных, определяющий коэффициент перехода радионуклида 137Cs в основные виды сельскохозяйственной продукции. Уровень загрязнения сельскохозяйственной продукции местного производства и произрастания 137Cs практически полностью обусловливает дозу внутреннего облучения сельских жителей.

Кроме того, чем меньше населенный пункт, чем дальше расположен от локального центра, тем относительно хуже социальные и экономические условия жизни его жителей, и тем больше степень натурализации в личном подсобном хозяйстве.
Потребление загрязненных продуктов и доза в малых населенных пунктах выше, чем в крупных. Второй фактор — численность жителей населенного пункта.
 Многократными исследованиями установлена исключительно важная роль в дозообразовании "лесного" фактора — наличия и доступности пищевых продуктов леса.
 Проведена классификация населенных пунктов по этим формирующим дозу внутреннего облучения факторам аналогично тому, как это было выполнено в работе [4].
 В результате проведенной классификации образовано 3 региона:
 Центральный регион, в него вошли: Брагинский, Житковичский, Калиновичский, Мозырский, Речицкий, Рогачевский, Петриковский, Светлогорский и Хойникский районы;
 Северо-Восточный регион, в него вошли: Буда-Кошелевский, Ветковский, Гомельский, Добрушский, Жлобинский, Корецкий, Ловский и Чечерский районы;
 Полесский регион, в него вошли: Ельский, Лельчицкий и Царовлянский районы.
 Проведен анализ соотношения доз внешнего и внутреннего облучения жителей всех населенных пунктов, находящихся на загрязненной территории, за 2015 г.
 Как видно из данных таблицы 1, соотношение доз внешнего и внутреннего облучения существенно различается в зависимости от уровня загрязнения территории.
 Для каждого региона проведен анализ динамики доз внешнего и внутреннего облучения жителей за период с 1992 г. по 2015 г. по зонам радиоактивного загрязнения.
 Центральный регион
 В таблице 2 представлено количество населенных пунктов Центрального региона, расположенных в зонах с различной плотностью загрязнения.
 В таблице 3 представлена динамика соотношения доз внешнего и внутреннего облучения и вклад каждого компонента в Центральном регионе по зонам радиоактивного загрязнения.
 Как видно из данных таблицы 3, в Центральном регионе на территории зоны загрязнения <5 Ки/км² вклад внешнего облучения со временем снижается, а внутреннего — возрастает, и к 2015 г. доза внутреннего облучения превосходит дозу внешнего.
 На территории зон загрязнения 5-10 Ки/км², 10-15 Ки/км² и >15 Ки/км² вклад внешнего облучения со временем снижается, а внутреннего — возрастает, но отмечается превалирование внешнего облучения.

Таблица 1 — Средние дозы облучения на территории с различной плотностью радиоактивного загрязнения

<table>
<thead>
<tr>
<th>Плотность загрязнения НП ²³⁹/²³⁷⁹й, Ки/км²</th>
<th>Количество НП</th>
<th>Средняя доза облучения, мЗв/год</th>
<th>Средняя доза облучения, мЗв/год</th>
<th>Средняя доза суммар. облуч., мЗв/год</th>
<th>Вклад дозы внешнего облучения, %</th>
<th>Вклад дозы внутреннего облучения, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>2082</td>
<td>0,12</td>
<td>0,14</td>
<td>0,27</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>5-10</td>
<td>269</td>
<td>0,40</td>
<td>0,35</td>
<td>0,75</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>10-15</td>
<td>34</td>
<td>0,69</td>
<td>0,59</td>
<td>1,28</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>>15</td>
<td>11</td>
<td>1,05</td>
<td>0,67</td>
<td>1,72</td>
<td>63</td>
<td>37</td>
</tr>
</tbody>
</table>

Таблица 2 — Количество населенных пунктов Центрального региона

<table>
<thead>
<tr>
<th>Год</th>
<th><5 Ки/км²</th>
<th>5-10 Ки/км²</th>
<th>10-15 Ки/км²</th>
<th>>15 Ки/км²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>761</td>
<td>195</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>1998</td>
<td>952</td>
<td>184</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>2004</td>
<td>906</td>
<td>181</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>2009</td>
<td>928</td>
<td>110</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>868</td>
<td>80</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Год</th>
<th>Вклад доз внешнего и внутреннего облучения, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5 Ки/км²</td>
</tr>
<tr>
<td>1992</td>
<td>53/47</td>
</tr>
<tr>
<td>1998</td>
<td>56/44</td>
</tr>
<tr>
<td>2004</td>
<td>50/50</td>
</tr>
<tr>
<td>2009</td>
<td>44/56</td>
</tr>
<tr>
<td>2015</td>
<td>44/56</td>
</tr>
</tbody>
</table>

Северо-Восточный регион

В таблице 4 представлено количество населенных пунктов Северо-Восточного региона, расположенных в зонах с различной плотностью загрязнения.

В таблице 5 представлена динамика соотношения доз внешнего и внутреннего облучения и вклад каждого компонента в Северо-Восточном регионе по зонам радиоактивного загрязнения.

Как видно из данных таблицы 5, на всей территории зон загрязнения в Северо-Восточном регионе вклад внешнего облучения со временем снижается, а внутреннего — возрастает, но отмечается превалирование внешнего облучения.

Полесский регион

В таблице 6 представлено количество населенных пунктов Полесского региона, расположенных в зонах с различной плотностью загрязнения.

В таблице 7 представлена динамика соотношения доз внешнего и внутреннего облучения и вклад каждого компонента в Полесском регионе по зонам радиоактивного загрязнения.

Таблица 4 — Количество населенных пунктов Северо-Восточного региона

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество населенных пунктов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5 Ки/км²</td>
</tr>
<tr>
<td>1992</td>
<td>728</td>
</tr>
<tr>
<td>1998</td>
<td>933</td>
</tr>
<tr>
<td>2004</td>
<td>917</td>
</tr>
<tr>
<td>2009</td>
<td>997</td>
</tr>
<tr>
<td>2015</td>
<td>984</td>
</tr>
</tbody>
</table>

Таблица 5 — Соотношение доз внешнего и внутреннего облучения в Северо-Восточном регионе

<table>
<thead>
<tr>
<th>Год</th>
<th>Вклад доз внешнего и внутреннего облучения, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5 Ки/км²</td>
</tr>
<tr>
<td>1992</td>
<td>60/40</td>
</tr>
<tr>
<td>1998</td>
<td>60/40</td>
</tr>
<tr>
<td>2004</td>
<td>57/43</td>
</tr>
<tr>
<td>2009</td>
<td>48/52</td>
</tr>
<tr>
<td>2015</td>
<td>55/45</td>
</tr>
</tbody>
</table>

Таблица 6 — Количество населенных пунктов Полесского региона

<table>
<thead>
<tr>
<th>Год</th>
<th>Количество населенных пунктов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5 Ки/км²</td>
</tr>
<tr>
<td>1992</td>
<td>223</td>
</tr>
<tr>
<td>1998</td>
<td>255</td>
</tr>
<tr>
<td>2004</td>
<td>249</td>
</tr>
<tr>
<td>2009</td>
<td>251</td>
</tr>
<tr>
<td>2015</td>
<td>230</td>
</tr>
</tbody>
</table>
Таблица 7 — Соотношение доз внешнего и внутреннего облучения в Полесском регионе

<table>
<thead>
<tr>
<th>Год</th>
<th><5 Кн/км²</th>
<th>5-10 Кн/км²</th>
<th>10-15 Кн/км²</th>
<th>>15 Кн/км²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>37/63</td>
<td>46/54</td>
<td>64/36</td>
<td>66/34</td>
</tr>
<tr>
<td>1998</td>
<td>41/59</td>
<td>56/44</td>
<td>72/28</td>
<td>61/39</td>
</tr>
<tr>
<td>2004</td>
<td>36/64</td>
<td>43/57</td>
<td>44/56</td>
<td>42/58</td>
</tr>
<tr>
<td>2009</td>
<td>28/72</td>
<td>38/62</td>
<td>41/59</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>23/77</td>
<td>32/68</td>
<td></td>
<td>34/66</td>
</tr>
</tbody>
</table>

Как видно из данных таблицы 7, на всей территории зон загрязнения в Полесском регионе вклад внутреннего облучения всегда был выше внешнего, а со временем он возрастает.

Заключение

Доза внешнего облучения пропорциональна плотности загрязнения и в связи с распадом 137Cs, и снижением плотности загрязнения, доза внешнего облучения снижается, что нельзя сказать о дозе внутреннего облучения. Доза внутреннего облучения зависит от ряда факторов, в том числе индивидуальной чувствительности: таких как преобладающий тип почв, наличие леса вблизи населённого пункта, численность жителей.

Соотношение вкладов внешнего и внутреннего компонента в суммарную среднегодовую эффективную дозу облучения со временем меняется. Если в 90-е годы вклад внешнего компонента превалировал (хотя это было не всегда так), то в дальнейшем вклад внутреннего компонента возрос и на современном этапе превалирует практически стабильно во времени средних значений дозы внутреннего облучения, что в принципе характерно для отдалённого периода аварии.

Библиографический список

L.N. Eventova, A.N. Mataras, Y.V. Visenberg, N.G. Vlasova

DYNAMICS OF RATIO OF EXTERNAL AND INTERNAL EXPOSURE DOSES OF RESIDENTS OF SETTLEMENTS IN TERRITORIES WITH VARIOUS DENSITY OF RADIOACTIVE CONTAMINATION

The assessment of exposure doses is necessary for making decisions on introduction of antiradiation measures to reduce exposure dose of population and determination of the most exposed groups of population in order to provide targeted medical assistance.
The exposure dose that can be formed in a person is the sum of the doses of external and internal exposure. The external exposure dose is proportional to the density of contamination of the settlement territory. The internal exposure dose is characterized by a wide scatter of individual values among residents within a single settlement, as well as by even greater variation in the values of the average annual dose of internal exposure among residents of settlements that differ in the varied conditions for the formation of the exposure dose.

In general, within the territory of radioactive contamination, in connection with the decay of 137Cs and a decrease in the contamination density, a decrease of the external exposure dose is observed, which is not common for the internal exposure dose: the stability of the average values of the internal exposure dose within the time is observed, which is characteristic for a remote period of an accident.

Key words: internal exposure dose, external exposure dose, settlement, contamination density

Поступила 27.02.2018